Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\sqrt{3+2\sqrt{2}-\sqrt{3-2\sqrt{2}}}\)
\(=\sqrt{3+2\sqrt{2}-\sqrt{2-2\cdot\sqrt{2}\cdot1+1}}\)
\(=\sqrt{3+2\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}\)
\(=\sqrt{3+2\sqrt{2}-\left|\sqrt{2}-1\right|}\)
\(=\sqrt{3+2\sqrt{2}-\left(\sqrt{2}-1\right)}\)
\(=\sqrt{3+2\sqrt{2}-\sqrt{2}+1}\)
\(=\sqrt{4+\sqrt{2}}\)
b) Ta có: \(\sqrt{7-4\sqrt{3}+\sqrt{12+6\sqrt{3}}}\)
\(=\sqrt{7-4\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{3}\cdot3}}\)
\(=\sqrt{7-4\sqrt{3}+\sqrt{\left(3+\sqrt{3}\right)^2}}\)
\(=\sqrt{7-4\sqrt{3}+\left|3+\sqrt{3}\right|}\)
\(=\sqrt{7-4\sqrt{3}+3+\sqrt{3}}\)
\(=\sqrt{10-3\sqrt{3}}\)
c) Ta có: \(\sqrt{5-2\sqrt{6}}+\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}\)
\(=\left|\sqrt{3}-\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{5}\right|\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{5}\)
\(=\sqrt{3}+\sqrt{5}\)
d) Ta có: \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}-\sqrt{8}\)
\(=\frac{\sqrt{6-2\cdot\sqrt{6}\cdot\sqrt{2}+2}}{\sqrt{3}-1}-\sqrt{8}\)
\(=\frac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{3}-1}-\sqrt{8}\)
\(=\frac{\left|\sqrt{6}-\sqrt{2}\right|}{\sqrt{3}-1}-2\sqrt{2}\)
\(=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-2\sqrt{2}\)
\(=\frac{2\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-2\sqrt{2}\)
\(=2-2\sqrt{2}\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}\)
\(=6\)
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)
\(=2+\sqrt{5}-\sqrt{5}+2\)
\(=4\)
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)
\(=1+\sqrt{5}-\sqrt{5}+1\)
\(=2\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(A=\sqrt{3}+2+2-\sqrt{3}\)
A = 2 + 2
A = 4
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(B=\sqrt{2}+3+3-\sqrt{2}\)
B = 3 + 3
B = 6
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(C=3+2\sqrt{2}+3-2\sqrt{2}\)
C = 3 + 3
C = 6
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(D=\sqrt{5}+2-\sqrt{5}+2\)
D = 2 + 2
D = 4
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(E=\sqrt{5}+1-\sqrt{5}+1\)
E = 1 + 1
E = 2
1. \(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}=2\sqrt{2}\)
2. \(\sqrt{12-6\sqrt{3}}+\sqrt{21-12\sqrt{3}}=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-3\right)^2}\\ =3-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}\)
3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(3+\sqrt{6}\right)^2}\\ =2\sqrt{6}-3+3+\sqrt{6}=3\sqrt{6}\)
1.\(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{2}\right)=2\sqrt{2}\)
2. \(\sqrt{12-6\sqrt{3}+\sqrt{21-12\sqrt{3}}}=\sqrt{12-6\sqrt{3}+\sqrt{\left(3-2\sqrt{3}\right)^2}}\)
\(=\sqrt{12-6\sqrt{3}+2\sqrt{3}-3}=\sqrt{9-4\sqrt{3}}\)
3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(\sqrt{6}-3\right)^2}\)
\(=2\sqrt{6}-3+3-\sqrt{6}=\sqrt{6}\)
\(a)\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}-1=1\)
\(b)\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{33-2.3.\sqrt{4}.\sqrt{6}}\)
\(=3-\sqrt{6}+\sqrt{33-2.3.\sqrt{24}}\)
\(=3-\sqrt{6}+\sqrt{\left(\sqrt{24}-3\right)^2}\)
\(=3-\sqrt{6}+\sqrt{24}-3\)
\(=\sqrt{24}-\sqrt{6}\)
\(=\sqrt{6}\left(2-1\right)=\sqrt{6}\)
\(c)\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}+\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}\)
\(=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{4}}+\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{4}}\)
\(=\frac{3-\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}\)
\(=\frac{6}{2}=3\)
\(d)\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)
\(=\frac{24}{2}=12\)
a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)
b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)
1: \(=\left(3+\sqrt{3}\right)\cdot\sqrt{12-6\sqrt{3}}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)
2: \(=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)