Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))
- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.
- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)
b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013
\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)
\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(B=\left(\frac{2x}{x-3}-\frac{x-1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\left(ĐK:x\ne\pm3\right)\)
\(=\frac{2x\left(x+3\right)-\left(x-1\right)\left(x-3\right)-x^2-1}{x^2-9}:\frac{x+3-x+1}{x+3}\)
\(=\frac{2x^2+6x-x^2+3x+x-3-x^2-1}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{4}\)
\(=\frac{10x-4}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{4}=\frac{10x-4}{4\left(x-3\right)}\)
\(B=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(=\left[\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}\right]:\left(\frac{x+3-x+1}{x+3}\right)\)
\(=\left(\frac{2x^2+6x-x^2+3x-x+3-x^2-1}{\left(x+3\right)\left(x-3\right)}\right):\frac{4}{x+3}\)
\(=\frac{8x-1}{\left(x+3\right)\left(x-3\right)}.\frac{x+3}{4}\)\(=\frac{8x-1}{4\left(x-3\right)}\)
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
Ta có:
a) M = \(\left(\frac{6x}{x^2-9}-\frac{1}{x+3}+\frac{5}{3-x}\right):\frac{4}{x^2-3x}\)
M = \(\left(\frac{6x}{\left(x-3\right)\left(x+3\right)}-\frac{x-3}{\left(x+3\right)\left(x-3\right)}-\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\cdot\frac{x^2-3x}{4}\)
M = \(\left(\frac{6x-x+3-5x-15}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x\left(x-3\right)}{4}\)
M = \(\frac{-12.x\left(x-3\right)}{\left(x-3\right)\left(x+3\right).4}\)
M = \(-\frac{3x}{x+3}\)
b) Với x = 2 => M = \(-\frac{3.2}{3+2}=-\frac{6}{5}\)
\(\left(x^2+\frac{1}{x}+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3\)
\(=\left[x^3-\left(\frac{1}{3}\right)^3\right]-\left(x-\frac{1}{3}\right)^3\)
\(=\left(x-\frac{1}{3}\right)^3-\left(x-\frac{1}{3}\right)^3\)
\(=\left(x-\frac{1}{3}\right)\left[x^2+\frac{1}{x}+\frac{1}{9}-\left(x-\frac{1}{3}\right)^2\right]\)
\(=\left(x-\frac{1}{3}\right)\left(\frac{1}{x}+\frac{2x}{3}\right)\)
\(=\frac{3x-1}{3}\times\frac{3+2x^2}{3x}\)
\(=\frac{9x+6x^2-3-2x^2}{9x}\)
\(=\frac{4x^2+9x-3}{9x}\)
\(M=\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
\(M=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(M=\frac{x^2-9-x^2+9}{x\left(x-3\right)}\)
\(M=\frac{0}{x\left(x-3\right)}\)
vậy \(M=\frac{0}{x\left(x-3\right)}\)
ĐKXĐ: \(\hept{\begin{cases}x\ne0\\x\ne3\end{cases},x\in R}\)
Ta có: \(M=\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)-x^2+9}{x\left(x-3\right)}\)
\(=\frac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)
Vậy \(M=0\leftrightarrow\hept{\begin{cases}x\ne0,x\ne3\\x\in R\end{cases}}\)