K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2016

KHI X<=2 => X ÂM

KHI ĐÓ TRỊ TUYỆT ĐỐI CỦA X-2=2-x

m=3X+2-X=2X+2

27 tháng 4 2017
Khi x《2 ,ta có 3x-x+2=0 2x+2=0 X=0 (nhận)
27 tháng 4 2017

lâp bảng xét dâu ta đc:
-khi x<=2-->M=3x-(x-2)=2x+2

28 tháng 9 2023

a) P = 2x(-3x + 2) - (x + 2)² + 8x² - 1

= -6x² + 4x - x² - 4x - 4 + 8x² - 1

= (-6x² - x² + 8x²) + (4x - 4x) + (-4 - 1)

= x² - 5

b) Thay x = 3 vào P, ta được:

P = 3² - 5

= 4

c) Để P = -1 thì x² - 5 = -1

x² = -1 + 5

x² = 4

x = 2 hoặc x = -2

Vậy x = 2; x = -2 thì P = -1

28 tháng 9 2023

\(a,P=2x\left(-3x+2\right)-\left(x+2\right)^2+8x^2-1\)

\(=-6x^2+4x-\left(x^2+4x+4\right)+8x^2-1\)

\(=-6x^2+4x-x^2-4x-4+8x^2-1\)

\(=\left(-6x^2-x^2+8x^2\right) +\left(4x-4x\right)+\left(-4-1\right)\)

\(=x^2-5\)

Vậy \(P=x^2-5\).

\(b,\) Ta có: \(P=x^2-5\)

Thay \(x=3\) vào \(P\), ta được:

\(P=3^2-5=9-5=4\)

Vậy \(P=4\) khi \(x=3\).

\(c,\) Có: \(P=-1\)

\(\Leftrightarrow x^2-5=-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(P=-1\) khi \(x\in\left\{2;-2\right\}\).

#\(Toru\)

14 tháng 6 2018

M = ( x - 5)( x + 2 ) + ( 3x - 6 )( x + 2 ) - ( 3x - 1/2  )2 + 5x2 

= x2-3x-10+3x2-12-(9x2-3x+1/4)+5x2

= x2-3x-10+3x2-12-9x2+3x-1/4+5x2

= 0.x - 89/4

Thay x=2018 => M= -89/4

14 tháng 6 2018

\(M=\left(x-5\right)\left(x+2\right)+\left(3x-6\right)\left(x+2\right)-\left(3x-\frac{1}{2}\right)^2+5x^2\)

\(M=x^2+2x-5x-10+\left(3x^2+6x-6x-12\right)-\left(9x^2-\frac{3}{2}x+\frac{1}{4}\right)+5x^2\)

\(M=x^2-3x-10+3x^2-12-9x^2+\frac{3}{2}x-\frac{1}{4}+5x^2\)

\(M=-\frac{3}{2}x-\frac{41}{4}\)

Thay x = 2018 vào biểu thức \(M=-\frac{3}{2}x-\frac{41}{4}\), ta có:

\(M=-\frac{3}{2}.2018-\frac{41}{4}=-3027-\frac{41}{4}=\frac{-12149}{4}\)

Vậy giá trị của biểu thức \(M=\left(x-5\right)\left(x+2\right)+\left(3x-6\right)\left(x+2\right)-\left(3x-\frac{1}{2}\right)^2+5x^2\)khi x = 2018 là \(-\frac{12149}{4}\)

\(M=x^2-4-3x^2-3x=-2x^2-3x-4\)

3 tháng 10 2020

\(ĐK:x\ne\pm1;x\ne0;x\ne3\)

Với \(x\ne\pm1;x\ne0;x\ne3\)thì\(M=\frac{x^3+2x^2-x-2}{x^3-2x^2-3x}\left[\frac{\left(x+2\right)^2-x^2}{4x^2-4}-\frac{3}{x^2-x}\right]=\frac{x^2\left(x+2\right)-\left(x+2\right)}{\left(x^3-x\right)-\left(2x^2+2x\right)}\left[\frac{x^2+4x+4-x^2}{4x^2-4}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x-1\right)-2x\left(x+1\right)}\left[\frac{4\left(x+1\right)}{4\left(x+1\right)\left(x-1\right)}-\frac{3}{x\left(x-1\right)}\right]=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-3x\right)}\left[\frac{1}{x-1}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+2\right)}{x\left(x-3\right)}.\frac{x-3}{x\left(x-1\right)}=\frac{x+2}{x^2}\)

M = 3 \(\Leftrightarrow\frac{x+2}{x^2}=3\Leftrightarrow3x^2-x-2=0\Leftrightarrow\left(x-1\right)\left(3x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}\)

Mà \(x\ne1\)(theo điều kiện) nên x =-2/3

16 tháng 12 2022

\(M=\dfrac{x}{\left(x-2\right)\cdot\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\)

\(=\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-6}{x^2-4}\)

a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)

\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)

\(=-17x+18\)

17 tháng 10 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)

\(=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)

\(=\left[\frac{x^2+3x+2}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x^2+9x}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)

\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}.\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)

\(=\frac{2-8x^2}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{2\left(1-4x^2\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{2\left(1-2x\right)\left(1+2x\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{1+2x}{3x}+\frac{x^2-3x-1}{3x}\)

\(=\frac{1+2x+x^2-3x-1}{3x}=\frac{x^2-x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)

b) Với \(x=6013\)( thỏa mãn ĐKXĐ )

Thay \(x=6013\)vào biểu thức ta được: 

\(M=\frac{6013-1}{3}=\frac{6012}{3}=2004\)