Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
\(A=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
\(\Leftrightarrow A=\left[\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\left[\left(\frac{1}{2\sqrt{x}}\right)^2-2.\frac{1}{2\sqrt{x}}.\frac{\sqrt{x}}{2}+\left(\frac{\sqrt{x}}{2}\right)^2\right]\)
\(\Leftrightarrow A=\left[\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right]\left(\frac{1}{4x}-\frac{1}{2}+\frac{x}{4}\right)\)
\(\Leftrightarrow A=\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\left(\frac{1}{4x}-\frac{2x}{4x}+\frac{x^2}{4x}\right)\)
\(\Leftrightarrow A=\frac{-4\sqrt{x}}{x-1}.\frac{\left(1-x\right)^2}{4x}\)
\(\Leftrightarrow A=\frac{4\sqrt{x}}{1-x}.\frac{\left(1-x\right)^2}{4x}\)
\(\Leftrightarrow A=\frac{1-x}{\sqrt{x}}\)
b) \(\frac{A}{\sqrt{x}}>1\)
\(\Leftrightarrow\frac{1-x}{\frac{\sqrt{x}}{\sqrt{x}}}>1\)
\(\Leftrightarrow1-x>1\Leftrightarrow x< 0\)
A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)
Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)
C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)
Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0
1: Ta có: \(Q=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}-1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\frac{x-2\sqrt{x}+x\sqrt{x}-x\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\frac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\frac{x-2\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\frac{x-1}{x+\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}\cdot\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
2: Ta có: \(\frac{1}{Q}=4\sqrt{x}-4\)
\(\Leftrightarrow Q=\frac{1}{4\sqrt{x}-4}\)
\(\Leftrightarrow\frac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{4\sqrt{x}-4}\)
\(\Leftrightarrow\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=\left(x+\sqrt{x}+1\right)\left(4\sqrt{x}-4\right)\)
\(\Leftrightarrow x+x\sqrt{x}-\sqrt{x}-1=4x\sqrt{x}-4\)
\(\Leftrightarrow x+x\sqrt{x}-\sqrt{x}-1-4x\sqrt{x}+4=0\)
\(\Leftrightarrow x-3x\sqrt{x}-\sqrt{x}+3=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-3\left(x\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left[\sqrt{x}-3\left(x+\sqrt{x}+1\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-3x-3\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(-3x-2\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)=0\)(vì \(-3x-2\sqrt{x}-3\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\sqrt{x}=1\)
hay x=1(không thỏa mãn ĐKXĐ)
Vậy: Không có giá trị nào của x thỏa mãn \(\frac{1}{Q}=4\sqrt{x}-4\)
1/ Ta có
\(N+\sqrt{x}-1=\frac{3}{\sqrt{x}-2}+\sqrt{x}-1\)
\(=\frac{3}{\sqrt{x}-2}+\sqrt{x}-2+1\)
\(\ge2\sqrt{3}+1\)
Dấu = xảy ra khi \(\frac{3}{\sqrt{x}-2}=\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2=\sqrt{3}\)
\(\Leftrightarrow\)x = (\(\sqrt{3}+2\))2
a. ĐK \(x\ge0\)và \(x\ne1\)
A =\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\cdot\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}+1+\sqrt{x}-x-1+\sqrt{x}}\)
\(=\frac{x+1}{4\sqrt{x}}\)
b. Thay \(x=\frac{2-\sqrt{3}}{2}\Rightarrow A=\frac{\frac{2-\sqrt{3}}{2}+1}{4\sqrt{\frac{2-\sqrt{3}}{2}}}=\frac{4-\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\frac{4-\sqrt{3}}{4-4\sqrt{3}}=-\frac{1+3\sqrt{3}}{8}\)
c . Ta có \(A-\frac{1}{2}=\frac{x+1}{4\sqrt{x}}-\frac{1}{2}=\frac{x-2\sqrt{x}+1}{4\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}>0\)với \(\forall x>0\)và \(x\ne1\)
Vậy A >1/2