\(\dfrac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}:2\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

\(M=\dfrac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}:2\sqrt{\dfrac{3-x+2x}{3-x}}\left(-3\le x< 3;x\ne-1\right)\\ M=\dfrac{\sqrt{x+3}\left(x+2+x\sqrt{3-x}\right)}{\sqrt{3-x}\left[x+\left(x+2\right)\sqrt{3+x}\right]}:2\sqrt{\dfrac{x+3}{3-x}}\\ M=\dfrac{\sqrt{x+3}\left(x+2+x\sqrt{3-x}\right)}{\sqrt{3-x}\left[x+\left(x+2\right)\sqrt{3+x}\right]}\cdot\dfrac{3-x}{2\sqrt{\left(3-x\right)}\sqrt{\left(x+3\right)}}\)

\(M=\dfrac{x+2+x\sqrt{3-x}}{x+\left(x+2\right)\sqrt{3-x}}\cdot\dfrac{\sqrt{3-x}}{2\sqrt{3-x}}\\ M=\dfrac{\left(x+2\right)\sqrt{3-x}+x\left(3-x\right)}{2x\sqrt{3-x}+2\left(x+2\right)\sqrt{3-x}}\\ M=\dfrac{\sqrt{3-x}\left(2x+2\right)}{\sqrt{3-x}\left(2x+2x+4\right)}=\dfrac{2\left(x+1\right)}{4\left(x+1\right)}=\dfrac{1}{2}\)

a: \(A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)

\(=\dfrac{-6}{\sqrt{x}+3}\)

b: Để A<-1/2 thì A+1/2<0

\(\Leftrightarrow-\dfrac{6}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)

\(\Leftrightarrow-12+\sqrt{x}+3< 0\)

=>0<x<81 và x<>9

3 tháng 6 2018

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm

Từ đó suy ra căn thức vô nghiệm

Vậy không có giá trị nào của x để biểu thức trên xác định

b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)

Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)

\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)

c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)

Rồi làm như câu b

d) \(\sqrt{\dfrac{2-x}{x+3}}\)

Để biểu thức trên xác định thì

\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)

e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi haha )

\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)

Để biểu thức trên xác định thì \(x\ge0\)\(x-3\ge0\Leftrightarrow x\ge3\)

Bữa sau mình làm tiếp

28 tháng 5 2017

\(=\frac{\left(x^2+5x+6\right)+x\sqrt{9-x^2}}{\left(3x-x^2\right)+\left(2+x\right)\sqrt{9-x^2}}\)

\(=\frac{\left(x+2\right)\left(3+x\right)+x\sqrt{\left(3+x\right)\left(3-x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3+x\right)\left(3-x\right)}}\) nhóm nhân tử chung

\(=\frac{\sqrt{3+x}\left(\left(x+2\right)\sqrt{3+x}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(x\sqrt{3-x}+\left(x+2\right)\sqrt{3+x}\right)}\)rồi rút gọn được

\(=\frac{\sqrt{3+x}}{\sqrt{3-x}}\)

27 tháng 6 2018

a) \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}}}\)

\(=\sqrt{1+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{2}\right)}=1\)

b) \(A=\sqrt{x^2-6x+9}-\dfrac{x^2-9}{\sqrt{9-6x+x^2}}\)

\(=\left|x-3\right|-\dfrac{\left(x-3\right)\left(x+3\right)}{\left|x-3\right|}\)

Th1: x-3 < 0

\(A=\left(3-x\right)-\dfrac{\left(x-3\right)\left(x+3\right)}{3-x}=3-x+x-3=0\)

Th2: x-3 > 0

\(A=x-3-\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x-3-\left(x+3\right)=-6\)

c)

Đk: x >/ 1 \(B=\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)

\(=\dfrac{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\dfrac{x-2}{\sqrt{x-1}}\)

\(=\dfrac{\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|}{\left|x-2\right|}\cdot\dfrac{x-2}{\sqrt{x-1}}\)

Th1: \(x-2\ge0\Leftrightarrow x\ge2\)

\(B=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}+1}{x-2}\cdot\dfrac{x-2}{\sqrt{x-1}}=\dfrac{2}{\sqrt{x-1}}\)

Th2: \(x-2\le0\Leftrightarrow x\le2\)

kết hợp với đk, ta được: 1 \< x \< 2

\(=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}-1}{2-x}\cdot\dfrac{x-2}{\sqrt{x-1}}=0\)

d) \(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)

chẳng biết có sai sót gì 0 nữa, xin lỗi tớ 0 xem lại đâu vì chán quá!

a: ĐKXĐ: x>=0; \(x\notin\left\{4;9\right\}\)

b: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\dfrac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3}{\sqrt{x}+2}\)

Thay \(x=3-2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{3}{\sqrt{2}-1+2}=\dfrac{3}{\sqrt{2}+1}=3\sqrt{2}-3\)

c: Để A<1 thì A-1<0

\(\Leftrightarrow\dfrac{3-\sqrt{x}-2}{\sqrt{x}+2}< 0\)

\(\Leftrightarrow1-\sqrt{x}< 0\)

hay 0<x<1