Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{3^{30}\cdot2^{100}}{2^{30}\cdot3^{30}\cdot2^{75}}=\dfrac{1}{2^5}=\dfrac{1}{32}\)
Đặt giá trị biểu thức là A, ta có:
\(A=\dfrac{\left(-27\right)^{10}.16^{25}}{6^{30}.\left(-32\right)^{15}}\)
\(A=\dfrac{\left(\left(-3\right)^3\right)^{10}.\left(2^4\right)^{25}}{2^{30}.3^{30}.\left(\left(-2\right)^5\right)^{15}}\)
\(A=\dfrac{\left(-3\right)^{30}.2^{100}}{2^{30}.3^{30}.\left(-2\right)^{75}}\)
\(A=\dfrac{3^{30}.2^{100}}{2^{30}.2^{75}.3^{30}}=\dfrac{1}{2^5}=\dfrac{1}{32}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^4.2^3.7^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^4.7^3\left(5^5+2^3\right)}\)
\(=\frac{1}{6}+\frac{93750}{3133}\)
Bài làm
\(C=\frac{2.5^{22}-9.5^{21}}{25^{10}}:\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
\(C=\frac{2.5^{21}.5-9.5^{21}}{25^{10}}:\frac{5.\left(3.7^{14}.7-19.7^{14}\right)}{7^{16}.7+3.7^{15}}\)
\(C=\frac{5^{21}.\left(2-9\right).5}{\left(5.5\right)^{10}}:\frac{5.[7^{15}.\left(3-19\right)].7}{7^{15}.\left(3+1\right).7}\)
\(C=\frac{5^{21}.\left(-7\right).5}{5^{10}.5^{10}}:\frac{5.7^{15}.\left(-16\right).7}{7^{15}.4.7}\)
\(C=\frac{5^{21}.\left(-35\right)}{5^{10}.5^{10}}:\frac{7^{15}.\left(-112\right).5}{7^{15}.28}\)
\(C=5.\left(-35\right):\frac{7^{15}.560}{7^{15}.28}\)
\(C=5.\left(-35\right):\frac{1.560}{1.28}\)
\(C=5.\left(-35\right):20\)
\(C=5.\left(-35\right).\frac{1}{20}\)
\(C=-\frac{175}{20}\)
\(C=-\frac{35}{4}\)
Vậy biểu thức trên \(C=\frac{2.5^{22}-9.5^{21}}{25^{10}}:\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)bằng \(C=-\frac{35}{4}\)
# Chúc bạn học tốt #
\(\frac{\left(\frac{53}{4}-\frac{59}{27}-\frac{65}{6}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{10}{7}+\frac{10}{3}\right):\left(\frac{37}{3}-\frac{100}{7}\right)}=\frac{\left(\frac{4293}{324}-\frac{708}{324}-\frac{3510}{324}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{30}{21}+\frac{70}{21}\right):\left(\frac{259}{21}-\frac{300}{21}\right)}=\frac{\frac{25}{108}.\frac{5751}{25}+\frac{187}{4}}{\frac{100}{21}:\left(-\frac{41}{21}\right)}\)=\(\frac{\frac{213}{4}+\frac{187}{4}}{-\frac{100}{41}}=100:\left(-\frac{100}{4}\right)=-4\)
\(30+\frac{14}{5}:\left(\frac{24}{150}-\frac{270}{150}-\frac{25}{150}\right)=30+\frac{14}{5}:\left(-\frac{271}{150}\right)=30+\left(-\frac{420}{271}\right)=\frac{7710}{271}\)
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(A=\frac{3+1}{3}.\frac{8+1}{8}.\frac{15+1}{15}...\frac{n^2+2n+1}{n^2+2n}\)
\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{\left(n+1\right)^2}{n^2+2n}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(A=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(A=\left(n+1\right).\frac{2}{n+2}=\frac{2.\left(n+1\right)}{n+2}\)
Ta có : \(1+\frac{1}{k^2+2k}=\frac{k^2+2k+1}{k^2+2k}=\frac{\left(k+1\right)^2}{k\left(k+2\right)}\) với k thuộc N*
Áp dụng với k = 1,2,3,....,n được :
\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(=\frac{\left(1+1\right)^2}{1.\left(1+2\right)}.\frac{\left(2+1\right)^2}{2.\left(2+2\right)}.\frac{\left(3+1\right)^2}{3.\left(3+2\right)}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(=\frac{\left[2.3.4...\left(n+1\right)\right]^2}{1.2.3...n.3.4.5...\left(n+2\right)}=\frac{\left[\left(n+1\right)!\right]^2}{n!.\frac{\left(n+2\right)!}{2}}\)