K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)

\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)

\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)

4 tháng 7 2015

đk: x>=0; x khác 3

a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)

11 tháng 7 2017

nhan ca  tu va mau voi\(\sqrt{2}\) ta dc

\(\frac{\sqrt{2x-4\sqrt{2x-4}}}{2}=\frac{\sqrt{2x-4-4\sqrt{2x-4}}}{2}=\frac{\sqrt{\left(\sqrt{2x-4}-2\right)^2}}{2}\)(dkx>=2)

                                                   =\(\frac{\left|\sqrt{2x-4}-2\right|}{2}\)

29 tháng 7 2019

\(M=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{x-3\sqrt{x}-4}\)

\(=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}\)\(+\frac{3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+4\right)+3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{2x-\sqrt{x}-3-x+2\sqrt{x}+8+3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}-4}\)

8 tháng 8 2016

1) \(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{2\left(1-\sqrt{5}\right)}=\frac{\sqrt{5}-1}{2\left(1-\sqrt{5}\right)}=-\frac{1}{2}\)

2) \(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{1-\sqrt{3}}=\frac{2-\sqrt{3}}{1-\sqrt{3}}\)

14 tháng 6 2018

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

6 tháng 9 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(A=\)\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}.\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\)\(\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(\Rightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=-\frac{1}{7}\Rightarrow-7\left(-5\sqrt{x}+2\right)=\sqrt{x}+3\)

\(\Rightarrow35\sqrt{x}-14=\sqrt{x}+3\)

\(\Rightarrow34\sqrt{x}=17\)

\(\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\left(tm\right)\)

Vậy với \(x=\frac{1}{4}\)thì \(A=-\frac{1}{7}\)