Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(f\left(x\right)=\left|x-1\right|-\left(2x-5\right)\)
Xét 2 TH:
+) Nếu \(\left|x-1\right|=x-1\)
=> \(f\left(x\right)=x-1-2x+5\)
=> \(f\left(x\right)=4-x\)
+) Nếu \(\left|x-1\right|=1-x\)
=> \(f\left(x\right)=1-x-2x+5\)
=> \(f\left(x\right)=6-3x\)
Vậy...
b) \(f\left(5\right)=\left|5-1\right|-\left(2.5-5\right)\)
=> \(f\left(5\right)=4-2=2\)
Vậy...
c) \(f\left(x\right)=0\)
=> \(\left|x-1\right|-\left(2x-5\right)=0\)
=> \(\left|x-1\right|=2x-5\)
Vì \(\left|x-1\right|\ge0\forall x\)
=> \(2x-5\ge0\)
=> \(x\ge\frac{5}{2}\)
=> \(x-1\ge\frac{5}{2}-1=\frac{3}{2}>0\)
=> \(\left|x-1\right|=x-1\)
=> \(x-1-2x+5=0\)
=> \(4-x=0\)
=> \(x=4\)
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
B = 2(3x - 1) - |5 - x|
B = 6x - 2 - 5 - x
B = (6x - x) + (-2 + 5)
B = 5x - 7
A=3(2x-1) - I x-5 I (*)
a)xét 2 th:
TH(1) : A=6x-3-x+5 (x-5>=0) = 5x-2
TH(2) : A=6x-3-5+x (x-5<0) = 7x-8
b)có I x-3I=6 => x-3=6 (x-3>=0) hay x-3= -6 (x-3<0)
<=> x=9 (x-3>=0) hay x= -3 (x-3<0)
thay x=9 (x-3>=0) vào (*)
A = 47
thay x= -3 (x-3<0) vào (*) => A= -29
Chúc bạn học tốt!