Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x+4\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}-2-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{4\sqrt{x}-1+x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x+4\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)
b: \(B=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)
a, Biến đổi ta được E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, Ta có E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) = \(1+\dfrac{4}{\sqrt{x}-3}\) .
. Nếu x không là số chính phương thì \(\sqrt{x}\) là số vô tỉ . Suy ra E là số vô tỉ ( loại )
. Nếu x là số chính phươn thì \(\sqrt{x}\) là số nguyên nên để E có giá trị nguyên thì \(4⋮\left(\sqrt{x}-3\right)\) .
Mà \(\sqrt{x}-3\ge-3\) nên \(\left(\sqrt{x}-3\right)\in\left\{-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
Kết hợp với ĐKXĐ ta được x = 1 ; 16 ; 25 ; 49
a: \(A=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{\left(2\sqrt{x}-3\right)}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
b: Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào A, ta được:
\(A=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)
\(=\dfrac{3\sqrt{2}-3-10}{2}:\dfrac{2\sqrt{2}-2+2}{2}\)
\(=\dfrac{3\sqrt{2}-13}{2\sqrt{2}}=\dfrac{6-13\sqrt{2}}{4}\)
a/ \(M=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}-\left(\sqrt{x}+2\right)\right].\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(=\dfrac{-2\sqrt{x}}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\sqrt{x}-x\)
b/ Chứng minh
\(\sqrt{x}-x\le\dfrac{1}{4}\)
\(\Leftrightarrow4x-4\sqrt{x}+1\ge0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)^2\ge0\) (đúng)
a: ĐKXĐ: x>=0; x<>1
b: \(B=\dfrac{2\sqrt{x}+2+x-\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-1}\)
Khi x=3+2căn2 thì \(B=\dfrac{\sqrt{2}+1}{2+2\sqrt{2}}=\dfrac{1}{2}\)
Câu a:
ĐKXĐ: \(x\neq \pm 3\)
\(\left|\frac{x+5}{-x^2+9}\right|=2\Rightarrow \left[\begin{matrix} \frac{x+5}{-x^2+9}=2\\ \frac{x+5}{-x^2+9}=-2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x+5=2(-x^2+9)\\ x+5=-2(-x^2+9)\end{matrix}\right.\Rightarrow \left[\begin{matrix} 2x^2+x-13=0\\ 2x^2-x-23=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{105}}{4}\\ x=\frac{1\pm \sqrt{185}}{4}\end{matrix}\right.\) (đều thỏa mãn )
Vậy.......
Câu b:
ĐKXĐ: \(x< 2\)
Ta có: \(\frac{4}{\sqrt{2-x}}-\sqrt{2-x}=2\)
\(\Rightarrow 4-(2-x)=2\sqrt{2-x}\)
\(\Leftrightarrow 4=(2-x)+2\sqrt{2-x}\)
\(\Leftrightarrow 5=(2-x)+2\sqrt{2-x}+1=(\sqrt{2-x}+1)^2\)
\(\Rightarrow \sqrt{2-x}+1=\sqrt{5}\) (do \(\sqrt{2-x}+1>0\) )
\(\Rightarrow \sqrt{2-x}=\sqrt{5}-1\)
\(\Rightarrow 2-x=6-2\sqrt{5}\)
\(\Rightarrow x=-4+2\sqrt{5}\) (thỏa mãn)
Vậy...........
a: \(A=\sqrt{3}\left(\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx\right)+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)
\(=\dfrac{\sqrt{3}}{2}sinx-\dfrac{3}{2}cosx+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)
\(=\sqrt{3}sinx-cosx\)
c: \(=2\left[\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right]+4sinx+1\)
\(=\sqrt{3}sin2x-cos2x+4sinx+1\)
d: \(D=\sqrt{3}cos2x+sin2x+2\cdot\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)\)
\(=\sqrt{3}\cdot cos2x+sin2x+\sqrt{3}\cdot sin2x-cos2x\)
\(=cos2x\left(\sqrt{3}-1\right)+sin2x\left(1+\sqrt{3}\right)\)
\(=\dfrac{4}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{x-4}\)
\(=\dfrac{4}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}\)