Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 2(3x - 1) - |5 - x|
B = 6x - 2 - 5 - x
B = (6x - x) + (-2 + 5)
B = 5x - 7
Ta có: \(B=\left|x-\dfrac{1}{7}\right|-\left|x+\dfrac{3}{5}\right|+\dfrac{4}{5}\)
\(=-x+\dfrac{1}{7}-x-\dfrac{3}{5}+\dfrac{4}{5}\)
\(=-2x+\dfrac{12}{35}\)
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
A=|3x+1|-x-2 (1)
Ta có:|3x+1|=3x+1<=>3x+1 \(\ge\) 0<=>\(x\ge-\frac{1}{3}\)
|3x+1|=-(3x+1)<=>3x+1<0\(\Leftrightarrow x<-\frac{1}{3}\)
Nếu \(x\ge-\frac{1}{3}\) thì (1) trở thành : 3x+1-x-2=(3x-x)+(1-2)=2x-1
Nếu \(x<-\frac{1}{3}\) thì (1) trở thành :-(3x+1)-x-2=-3x-1-x-2=(-3x-x)+(-1-2)=-4x-3
Vậy..............
a) \(|x|-x\)
\(\Rightarrow\orbr{\begin{cases}x< 0\rightarrow\left|x\right|-x=2\left|x\right|\\x>0\rightarrow\left|x\right|-x=0\end{cases}}\)
\(\Rightarrow x=0\rightarrow x=0\)