Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\sqrt{3-\sqrt{5}}\)\(\sqrt{2}\)(\(\sqrt{5}-1\)) (\(3+\sqrt{5}\))
=\(\sqrt{6-2\sqrt{5}}\)(\(\sqrt{5}-1\)) (\(3+\sqrt{5}\))
=\(\sqrt{\left(\sqrt{5}+1\right)^2}\)(\(\sqrt{5}-1\))(\(3+\sqrt{5}\))
=(\(\sqrt{5}+1\))(\(\sqrt{5}-1\))(\(3+\sqrt{5}\))
=4(\(3+\sqrt{5}\))
=12+4\(\sqrt{5}\)
Đặt \(x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}.\)
\(\Rightarrow x^3=\sqrt{5}+2-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\left(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\right)-\sqrt{5}+2\)
\(=4-3\sqrt[3]{5-4}.x\)( Vì \(x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\))
\(=4-3x\)
\(\Rightarrow x^3+3x-4=0\Leftrightarrow\left(x^3-1\right)+\left(3x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\Leftrightarrow x-1=0\)( Vì \(x^2+x+4=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\))
\(\Leftrightarrow x=1\)hay \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}=1\)
a: \(=6\sqrt{2}-12\sqrt{3}-10\sqrt{2}+12\sqrt{3}=-4\sqrt{2}\)
b: \(=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\sqrt{4-3}=1\)
Bài làm:
a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)
\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)
\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)
\(A=4+2\sqrt{3}+5\sqrt{3}-1\)
\(A=3+7\sqrt{3}\)
b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)
\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)
\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)
\(A=2\)
Phần b mình viết nhầm tên thành A, bn sửa thành B nhé
c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(C=\sqrt{3}-1-2-\sqrt{3}\)
\(C=-3\)
\(A=\sqrt{3-\sqrt{5-2\sqrt{3}}}-\sqrt{3+\sqrt{5+2\sqrt{3}}}\)
\(A^2=\left(\sqrt{3-\sqrt{5-2\sqrt{3}}}-\sqrt{3+\sqrt{5+2\sqrt{3}}}\right)^2\)
\(A^2=\left(3-\sqrt{5-2\sqrt{3}}\right)-2\sqrt{\left(3-\sqrt{5-2\sqrt{3}}\right)\left(3+\sqrt{5+2\sqrt{3}}\right)}+\left(3+\sqrt{5+2\sqrt{3}}\right)\)
\(A^2=\left(3-\sqrt{5-2\sqrt{3}}\right)-2\sqrt{9+3\sqrt{5+2\sqrt{3}}-3\sqrt{5-2\sqrt{3}}-\sqrt{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}}+\left(3+\sqrt{5+2\sqrt{3}}\right)\)