\(8x^{n-1}.\left(\frac{1}{2}x^{n+1}-\frac{3}{4}x\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

A=(1/x-2 - (2x/(2-x)(2+x) - 1/2+x) ) *(2-x)/x 
=(1/x-2 - x^2+5x-2/(2-x)(2+x))*2-x/x 
=(-x^3-4x^2+12x/(x-2)(2-x)(2+x))*2-x/x 
= - x(x-2)(x+6)(2-x)/x(x-2)(2-x)(2+x) 
= - x+6/x+2

22 tháng 11 2017

giup minh voi cac ban

NV
25 tháng 12 2018

\(A-1=\left(x+1\right)\left(x^2+1\right)...\left(x^{256}+1\right)\)

\(\Rightarrow\left(A-1\right)\left(x-1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)...\left(x^{256}+1\right)\)

\(\Rightarrow\left(A-1\right)\left(x-1\right)=\left(x^2-1\right)\left(x^2+1\right)...\left(x^{256}+1\right)\)

\(\Rightarrow\left(A-1\right)\left(x-1\right)=\left(x^4-1\right)\left(x^4+1\right)...\left(x^{256}+1\right)\)

\(\Rightarrow\left(A-1\right)\left(x-1\right)=\left(x^{256}-1\right)\left(x^{256}+1\right)=x^{512}-1\)

\(\Rightarrow A-1=\dfrac{x^{512}-1}{x-1}\)

\(\Rightarrow A=\dfrac{x^{512}-1}{x-1}+1=\dfrac{x^{512}+x-2}{x-1}\)

8 tháng 6 2017

a) \(B=\left[\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{x-4}{x-3}-\frac{\left(x-1\right)}{x+3}\right]:\left(\frac{x+3-1}{x+3}\right)\)

ĐK: \(\hept{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

\(=\left[\frac{21+x-4-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\left(\frac{x+2}{x+3}\right)\)

\(=\left[\frac{21+x-4-x^2+3x+x-3}{\left(x+3\right)\left(x-3\right)}\right]\times\left(\frac{x+3}{x+2}\right)\)

\(=\left(\frac{-x^2+5x+14}{x-3}\right)\left(\frac{1}{x+2}\right)\)

\(=\frac{-\left(x^2+2x-7x-14\right)}{\left(x-3\right)\left(x+2\right)}\)

\(=\frac{-\left(x+2\right)\left(x-7\right)}{\left(x-3\right)\left(x+2\right)}\)

\(=\frac{7-x}{x-3}\)

b) \(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Mà \(x\ne-3\)

\(\Rightarrow x=2\)

Thế \(x=2\)vào B ta được:

\(B=\frac{7-2}{2-3}=-5\)

c) \(B=\frac{7-x}{x-3}=\frac{-3}{5}\)

\(\Leftrightarrow5\left(7-x\right)=-3\left(x-3\right)\)

\(\Leftrightarrow35-5x+3x-9=0\)

\(\Leftrightarrow-2x=-26\)

\(\Leftrightarrow x=13\)

Vậy để \(B=\frac{-3}{5}\)thì \(x=13\)

d) B<0\(\Rightarrow\frac{7-x}{x-3}< 0\)

TH1: \(\hept{\begin{cases}7-x< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>7\\x>3\end{cases}\Rightarrow}x>7}\)

TH2: \(\hept{\begin{cases}7-x>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 7\\x< 3\end{cases}\Rightarrow}x< 3}\)

Để B<0 thì x>7 hoặc x<3

8 tháng 6 2017

a) \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)         ĐKXĐ: x khác =-3; x khác -2

\(B=\frac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)

\(B=\frac{3x+6}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)

\(B=\frac{3\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{x+2}\)

\(B=\frac{3}{x-3}\)

b) bước đầu tiên ta phải tìm x:

 \(\left|2x+1\right|=5\)

TH1: 2x+1=5                      TH2: 2x+1=-5

            2x=4                                 2x=-6

          x=2 (nhận)                             x=-3 (loại)

thay x=2 vào biểu thức B, ta được:

\(B=\frac{3}{2-3}=\frac{3}{-1}=-3\)

vậy B=-3 tại x=2

c) Để \(B=-\frac{3}{5}\)thì \(\frac{3}{x-3}=-\frac{3}{5}\)

\(\Leftrightarrow-3\left(x-3\right)=15\)

\(\Leftrightarrow x-3=-5\)

\(\Leftrightarrow x=-2\)

vậy \(x=-2\)thì \(B=-\frac{3}{5}\)

d) để B<0 thì \(\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)

vậy để B<0 thì x phải < 3 và x khác -3

\(\left(x+1\right)^4-6\left(x+1\right)^2-\left(x^2-2\right)\left(x^2+2\right)\\ =x^4+4x^3+6x^2+4x+1-6x^2-12x-6-x^4+4\\ =4x^3-8x+5\)