Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
Đk: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)
\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)
với x= 5 thoản mãn điều kiện, x=145 loại
Vậy \(S=\left\{5\right\}\)
Thay a,b,c lần lượt vào biểu thức...
Tính được kết quả:
a) A= \(-\frac{7}{10}\)
b) B= \(-\frac{2}{7}\)
c) C= 0
Ta có:
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\)
\(\Rightarrow2A=2.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\right)=2.\frac{2015}{2017}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{4030}{2017}\)
Bạn xem lại đề
\(A=\left(\frac{1-\left(\sqrt{a}\right)^3}{1-\sqrt{a}}\right)\left(\frac{1-\sqrt{a}}{1-\left(\sqrt{a}\right)^2}\right)^2\)
\(=\left(1+\sqrt{a}+a\right).\frac{1}{\left(1+\sqrt{a}\right)^2}\)
\(=\frac{1+\sqrt{a}+a}{1+2\sqrt{a}+a}\)
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)
Bạn xem lời giải của mình nhé:
Giải:
A luôn > 0 (vì các số hạng trong tổng A đều lớn hơn 0)(1)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\\ 2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\\ 2A-A=1-\frac{1}{2^{100}}< 1\)
\(A< 1\)(2)
Từ (1) và (2) \(\Rightarrow0< A< 1\left(đpcm\right)\)
Chúc bạn học tốt!
\(Q=\frac{2\cdot2010}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)
\(Q=\frac{2\cdot2010}{1+\frac{1}{\frac{(1+2)\cdot2}{2}}+\frac{1}{\frac{(1+3)\cdot3}{2}}+\frac{1}{\frac{(1+4)\cdot4}{2}}+...+\frac{1}{\frac{(1+2012)\cdot2012}{2}}}\)
\(Q=\frac{2\cdot2010}{1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2025078}}\)
\(Q=\frac{2\cdot2010}{1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}...+\frac{2}{4050156}}\)
\(Q=\frac{2\cdot2010}{1+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{2012\cdot2013}}\)
\(Q=\frac{2\cdot2010}{1+2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right]}\)
\(Q=\frac{2\cdot2010}{1+2\left[\frac{1}{2}-\frac{1}{2013}\right]}=\frac{2\cdot2010}{1+\frac{2011}{2013}}=\frac{2\cdot2010}{\frac{4024}{2013}}=\frac{4020}{\frac{4024}{2013}}=4020\cdot\frac{2013}{4024}=...\)
Nguyễn Linh Chi ơi , hình như cô nhầm thì phải :v \(2-\frac{2}{2013}=\frac{2\cdot2013-2}{2013}=\frac{4026-2}{2013}=\frac{4024}{2013}\)
sao mà bằng \(\frac{4020}{2013}\)được cô
Ta có:
\(P=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\)
\(P=1+\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+3\right).3}{2}}+...+\frac{1}{\frac{\left(1+2012\right).2012}{2}}\)
\(P=1+\frac{2}{3.2}+\frac{2}{4.3}+...+\frac{2}{2013.2012}\)
\(P=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)\
\(P=1+2\left(\frac{1}{2}-\frac{1}{2013}\right)\)
\(P=1+1-\frac{2}{2013}=2-\frac{2}{2013}=\frac{4020}{2013}\)
\(Q=\frac{2.2010}{P}=\frac{4020}{\frac{4020}{2013}}=2013\)....
ta có:
\(log^{\left(2a^2\right)}_2+\left(log_2^a\right)a^{log_a^{\left(log^a_1+1\right)}}+\frac{1}{2}log^2_2a^4=log_2^2+log_2^{a^2}+log_2^a\left(log^a_2+1\right)+\frac{1}{2}log^2_2a^4\)
\(=1+2log^a_2+log^a_2\left(1+log^a_2\right)+2log^2a_2\)
\(=3log^2_2a+3log^a_2+1\)
Bạn nhân A cho 1/2 rồi lấy A trừ 1/2 a bằng phương pháp khử liên tiếp rồi lấy kết quả nhân 2 bạn sẽ có kết quả rút gọn 100% đúng nếu không hiểu chỗ nào bạn cứ hỏi mik mik hk bjt viết phân số nên không giải rõ ràng được
Nhân hai vế với ta đựơc:
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...............+\frac{1}{2^{2011}}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2012}}\right)\)
=> \(A=2-\frac{1}{2^{2012}}\)
tick cho mình nha Hà Như Thủy ! đúng 100 % đó.