K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)

\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)

\(A=\left(x+y\right)\left(x^2+y^2+2xy\right)\)

\(A=\left(x+y\right)\left(x+y\right)^2\)

\(A=\left(x+y\right)^3\)

30 tháng 10 2016

Ta có:A= x2(x+y)+y2(x+y)+2x2y+2xy2

           = x3+x2y+y3+xy2+2x2y+2xy2+y3

              = x3+(x2y+2x2y)+(xy2+2xy2)+y3

              = x3+3x2y+3xy2+y

              = (x+y)3

28 tháng 10 2021

\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\\ A=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2\\ A=\left(x+y\right)^3\)

6 tháng 7 2018

a) (3x2 – 2x2y) : x2 – (2xy2 + x2y) : (1/3 xy)

= (3x3 : x2) + (-2x2y : x2) - [(2x2y : 1/3 xy) +( x2y : 1/3 xy)]

= 3x – 2y – (6y + 3x) = 3x – 2y – 6y – 3x = -8y

1b.=2((x+y)+(x+y)(x-y)+(x-y))=2(x2-y2+x+y+x-y)=2(x2-y2+2x)=2x2-2y2+4x

2a.=4xy+4xy+2y=8xy+2y=2y(4x+1)

b.=(3x)2+2.3x.y+y2-(2z)2=(3x+y)2-(2z)2=(3x+y-2z)(3x+y+2z)

c.=x2-x-7x+7=x(x-1)-7(x-1)=(x-1)(x-7)

30 tháng 9 2018

\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

hk tốt

^^

3 tháng 3 2019

Ta có:

 

x x - y - y y - x = x 2 - x y - y 2 - x y = x 2 - x y - y 2 + x y = x 2 - y 2

 

Chọn (B) x 2 - y 2

15 tháng 10 2023

\(\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)

\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left[\left(x-y\right)+\left(x+y\right)\right]^2\)

\(=\left(x-y+x+y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

15 tháng 10 2023

\(\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)

\(=\left(x-y\right)^2+2\cdot\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)

20 tháng 11 2021

\(A=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x=x^2+4x\\ B=\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)

21 tháng 8 2023

a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)

\(A=x^3+8-x^3+2\)

\(A=10\)

b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(B=x^3-1-\left(x^3+1\right)\)

\(B=x^3-1-x^3-1\)

\(B=-2\)

c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)

\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)

\(C=8x^3-y^3+y^3-27x^3\)

\(C=-19x^3\)

21 tháng 8 2023

a)

\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)

b)

\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)

c)

\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)

26 tháng 3 2018

Ta có:

Bài tập: Rút gọn phân thức | Lý thuyết và Bài tập Toán 8 có đáp án