\(\frac{7}{3+\sqrt{2}}+\frac{2}{1-\sqrt{3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

\(A=\frac{7}{3+\sqrt{2}}+\frac{2}{1-\sqrt{3}}\)

\(=\frac{7\left(3-\sqrt{2}\right)}{3^2-\sqrt{2}^2}+\frac{2\left(1+\sqrt{3}\right)}{1^2-\sqrt{3}^2}\)

\(=\frac{7\left(3-\sqrt{2}\right)}{7}+\frac{2\left(1+\sqrt{3}\right)}{-2}\)

\(=3-\sqrt{2}-1-\sqrt{3}\)

\(=2-\sqrt{2}-\sqrt{3}\)

18 tháng 10 2020

\(A=\frac{7}{3+\sqrt{2}}+\frac{2}{1-\sqrt{3}}=\frac{7\left(3-\sqrt{2}\right)}{3^2-\left(\sqrt{2}\right)^2}+\frac{2\left(1+\sqrt{3}\right)}{1^2-\left(\sqrt{3}\right)^2}\)

\(=\frac{7\left(3-\sqrt{2}\right)}{9-2}+\frac{2\left(1+\sqrt{3}\right)}{1-3}=\frac{7\left(3-\sqrt{2}\right)}{7}+\frac{2\left(1+\sqrt{3}\right)}{-2}\)

\(=\left(3-\sqrt{2}\right)-\left(1+\sqrt{3}\right)=3-\sqrt{2}-1-\sqrt{3}=2-\sqrt{2}-\sqrt{3}\)

DD
5 tháng 12 2020

\(\frac{1}{\sqrt{2k+1+2\sqrt{k^2+k}}}=\frac{1}{\sqrt{k+1+2\sqrt{k\left(k+1\right)}+k}}=\frac{1}{\sqrt{k+1}+\sqrt{k}}\)

\(=\frac{\sqrt{k+1}-\sqrt{k}}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)

Do đó ta có: 

\(A=\frac{1}{\sqrt{3+2\sqrt{2}}}+...+\frac{1}{\sqrt{2n+1+2\sqrt{n^2+n}}}\)

\(A=\sqrt{2}-\sqrt{1}+...+\sqrt{n+1}-\sqrt{n}\)

\(A=\sqrt{n+1}-1\)

Với \(n=2018\)ta có: \(A=\sqrt{2019}-1\).

25 tháng 7 2018

a,\(x\ge0,x\ne49\)

23 tháng 4 2021

\(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{3-\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{3+\sqrt{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

23 tháng 4 2021

a, \(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt[]{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

1 tháng 10 2019

\(A=\frac{1}{\sqrt{11-2\sqrt{30}}}-\frac{3}{\sqrt{7-2\sqrt{10}}}+\frac{4}{\sqrt{8+4\sqrt{3}}}\)

\(=\frac{1}{\sqrt{6-2.\sqrt{6}.\sqrt{5}+5}}-\frac{3}{\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}}+\frac{2}{\sqrt{4+2\sqrt{3}}}\)

\(=\frac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\frac{3}{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}+\frac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{2}{\sqrt{3}+1}\)

\(=\frac{6-5}{\sqrt{6}-\sqrt{5}}-\frac{5-2}{\sqrt{5}-\sqrt{2}}+\frac{3-1}{\sqrt{3}+1}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}{\sqrt{6}-\sqrt{5}}-\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}+1}\)

\(=\sqrt{6}+\sqrt{5}-\sqrt{5}+\sqrt{2}+\sqrt{3}+1=\sqrt{6}+\sqrt{2}+\sqrt{3}+1\)

\(=\sqrt{2}\left(\sqrt{3}+1\right)+\sqrt{3}+1=\left(\sqrt{3}+1\right)\left(\sqrt{2}+1\right)\)

a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)

b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)