Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: a>=0; a<>4
b: \(M=\dfrac{a\sqrt{a}-a\sqrt{a}+2a-a-2\sqrt{a}}{a-4}=\dfrac{a-2\sqrt{a}}{a-4}=\dfrac{\sqrt{a}}{\sqrt{a}+2}\)
c: Khi a=9 thì \(M=\dfrac{3}{3+2}=\dfrac{3}{5}\)
\(A=\sqrt{64a^2}\cdot2a=\sqrt{\left(8a\right)^2}\cdot2a=\left|8a\right|\cdot2a\)
Với a < 0 A = 8a.(-2a) = -16a2
Với a ≥ 0 A = 8a.2a = 16a2
\(B=3\sqrt{9a^6}-6a^3=3\sqrt{\left(3a^3\right)^2}-6a^3=9\left|a^3\right|-6a^3\)
Bài 1:
a) \(B=\sqrt{1-4x+4x^2}\)
\(=\sqrt{\left(1-2x\right)^2}\)
\(=\left|1-2x\right|\)
Nếu \(x\le\frac{1}{2}\)thì: \(B=1-2x\)
Nếu \(x>\frac{1}{2}\)thì: \(B=2x-1\)
b) Tại \(x=-7\)thì: \(B=1-2.\left(-7\right)=15\)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn!