K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

a)-2a-5a=-7a

b)5a+3a=8a

c)

d)-10a^3-3a^3=-13a^3

1 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

20 tháng 6 2016

\(a,5\sqrt{4a^6}-3a^3=5\left|2a^3\right|-3a^2=-10a^3-3a^3=-13a^3\)(vì a<0)

b)\(\sqrt{9a^4}+3a^2=\left|3a^2\right|+3a^2=3a^2+3a^2=6a^2\)

c)\(\frac{\sqrt{x^2-10x+25}}{x-5}=\frac{\left|x-5\right|}{x-5}\)

Với x-5>0 => x>5 => \(\frac{\sqrt{x^2-10x+25}}{x-5}=1\)

Với x-5<0=>x<5 =>\(\frac{\sqrt{x^2-10x+25}}{x-5}=-1\)

10 tháng 8 2015

\(C=\frac{3}{3a-1}\sqrt{5a\left(1-6a+9a^2\right)}=\frac{3}{3a-1}\sqrt{5a\left(1-3a\right)^2}=\frac{3}{3a-1}\sqrt{5a}\left(3a-1\right)\) (Vì a>1/3 nên 1-3a<0

\(=3\sqrt{5a}\)

10 tháng 8 2015

\(C=\frac{3}{3a-1}\cdot\sqrt{5a}l1-3al\)

   \(=\frac{3}{3a-1}\cdot\sqrt{5a}\cdot\left(3a-1\right)\)  ( vì a > 1/3)

     = \(3\sqrt{5a}\)

16 tháng 8 2018

A=\(\dfrac{1}{3a-2}\sqrt{\left(4-12a+9a^2\right)49a^2}=\dfrac{1}{3a-2}\sqrt{\left(2-3a\right)^249a^2}\)

\(A=7a\)

22 tháng 8 2015

2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)

c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)

d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)

31 tháng 3 2017

a) ĐS: ; b) ĐS: 26; c) ĐS: 12a

d) - = - 6a + 9 -

= - 6a + 9 - = - 6a + 9 - 6│a│.

Khi a ≥ 0 thì │a│= a.

Do đó - = - 6a + 9 -6a = - 12a + 9.

Khi a < 0 thì │a│= a.

Do đó - = - 6a + 9 + 6a = + 9.

22 tháng 4 2017

a) \(a-\sqrt{a}\)

b) \(-5ab\sqrt{ab}\)

31 tháng 7 2017

a) Ta có:

\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-4b.5a\sqrt{a}+5a.4b\sqrt{a}-2.3\sqrt{a}\)

\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\) \(=-\sqrt{a}\)

b) Ta có:

\(5a\sqrt{64ab^3}-\sqrt{3}.\sqrt{12a^3b^3}+2ab\sqrt{9ab}\) \(-5b\sqrt{81a^3b}\)

\(=5a.8b\sqrt{ab}-\sqrt{3.12a^3b^3}+2ab.3\sqrt{ab}\) \(-5b.9a\sqrt{ab}\)

\(=40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\)\(\sqrt{ab}\)

\(=-5ab\sqrt{ab}\)