Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
a) P = 2x(-3x + 2) - (x + 2)² + 8x² - 1
= -6x² + 4x - x² - 4x - 4 + 8x² - 1
= (-6x² - x² + 8x²) + (4x - 4x) + (-4 - 1)
= x² - 5
b) Thay x = 3 vào P, ta được:
P = 3² - 5
= 4
c) Để P = -1 thì x² - 5 = -1
x² = -1 + 5
x² = 4
x = 2 hoặc x = -2
Vậy x = 2; x = -2 thì P = -1
\(a,P=2x\left(-3x+2\right)-\left(x+2\right)^2+8x^2-1\)
\(=-6x^2+4x-\left(x^2+4x+4\right)+8x^2-1\)
\(=-6x^2+4x-x^2-4x-4+8x^2-1\)
\(=\left(-6x^2-x^2+8x^2\right) +\left(4x-4x\right)+\left(-4-1\right)\)
\(=x^2-5\)
Vậy \(P=x^2-5\).
\(b,\) Ta có: \(P=x^2-5\)
Thay \(x=3\) vào \(P\), ta được:
\(P=3^2-5=9-5=4\)
Vậy \(P=4\) khi \(x=3\).
\(c,\) Có: \(P=-1\)
\(\Leftrightarrow x^2-5=-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(P=-1\) khi \(x\in\left\{2;-2\right\}\).
#\(Toru\)
( 3 -xy2 )2 - ( 2 + xy2 )2
= 9 - 2.3.xy2 + x2y4 - 4 + 2.2.xy2 + x2y4
= 9 - 6xy2 + x2y4 - 4 + 4xy2 + x2y4
= 2x2y4 - 2x2 + 5
Study well
TL:
\(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)
\(=5\left(1-2xy^2\right)\)
\(=5-10xy^2\)
a, \(M=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\) (ĐK : \(\forall x\in R\))
\(=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)
* Nếu x\(\ge2\Rightarrow M=x-2-x-2=-4\)
*Nếu x<2 => M=2-x-x-2=-2x
b,Để M=2\(\ne-4\)
=>M=-2x
=>-2x=-4
=>x=2
__________________________________________________________________________________________
P=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
* Nếu \(x\ge2\Rightarrow P=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)
* Nếu x<2 =>P=\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
VẬY.......
Tk nha!
999999992-222222222222222222