K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

a) sin anpha = 2/3 => góc anpha = 42o 

cos 42o = 0,743

tan 42o =  0,9

cot  42o = 1/tan 42o = 1/0,9 = 1,111

b) tan anpha + cot anpha = 3

<=> tan anpha + 1/tan anpha = 3

<=> tananpha = 2

<=> tan anpha = \(\sqrt{2}\)

=> góc anpha =  55

Ta có: a = sin 55o . cos 55o

<=> a = 0,469

11 tháng 10 2017

tan a =2/3

=> đặt sin a = 2x thì cos a = 3x

rồi làm tiếp còn cách khác thì k biết làm

19 tháng 8 2021

\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\sin a+\cos a}{\frac{\sin^2a}{\cos^2a}-1}=\)

\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)

\(=\frac{\sin^2a\left(\sin a+\cos a\right)-\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)

\(=\frac{\left(\sin a+\cos a\right)\left(\sin^2a-\cos^2a\right)}{\sin^2a-\cos^2a}=\sin a+\cos a\left(dpcm\right)\)

28 tháng 9 2018

a) \(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)

b) \(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)

c) \(tan^2\alpha\left(2sin^2\alpha+3cos^2\alpha-2\right)=tan^2\alpha\left[cos^2\alpha+2\left(sin^2\alpha+cos^2\alpha\right)-2\right]=\dfrac{sin^2\alpha}{cos^2\alpha}\times cos^2\alpha=sin^2\alpha\)

28 tháng 9 2018

a)

\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)

b)\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)

c) mình chưa rõ đề nha

NV
16 tháng 9 2019

\(cosa.sina=\frac{1}{5}\Rightarrow\frac{cosa.sina}{sin^2a}=\frac{1}{5sin^2a}=\frac{sin^2a+cos^2a}{5sin^2a}\)

\(\Rightarrow\frac{cosa}{sina}=\frac{1}{5}+\frac{1}{5}.\frac{cos^2a}{sin^2a}\)

\(\Rightarrow cota=\frac{1}{5}+\frac{1}{5}cot^2a\)

\(\Rightarrow cot^2a-5cota+1=0\)

\(\Rightarrow cota=\frac{5\pm\sqrt{21}}{2}\)

NV
16 tháng 9 2019

Câu 2:

\(\frac{cosa}{1-sina}=\frac{cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa\left(1+sina\right)}{1-sin^2a}=\frac{cosa\left(1+sina\right)}{cos^2a}=\frac{1+sina}{cosa}\)

b/

\(\frac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}\)

\(=\frac{sin^2a+cos^2a+2sina.cosa-\left(sin^2a+cos^2a-2sina.cosa\right)}{sina.cosa}\)

\(=\frac{4sina.cosa}{sina.cosa}\)

\(=4\)

7 tháng 8 2017

~ ~ ~ Áp dụng đẳng thức \(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\) ~ ~ ~

a)

\(\left(\sin\alpha+\cos\alpha\right)^2-2\sin\alpha\cos\alpha-1\)

\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\right)\)

\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2\)

= 0

b)

\(\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+1\)

\(=\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\)

\(=\left(\sin\alpha-\cos\alpha\right)^2+\left(\sin\alpha+\cos\alpha\right)^2\)

\(=2\left(\sin^2\alpha+\cos^2\alpha\right)\)

= 2

c)

\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2+2\)

\(=2\left(\sin^2\alpha+\cos^2\alpha\right)+2\)

= 4

d)

\(\sin^2\alpha\cot^2\alpha+\cos^2\alpha\tan^2\alpha\)

\(=\left(\sin\times\dfrac{\cos}{\sin}\right)^2+\left(\cos\times\dfrac{\sin}{\cos}\right)^2\)

= 1

19 tháng 9 2018

a) ta có : \(\left(1-cosa\right)\left(1+cosa\right)=1-cos^2a=sin^2a\left(đpcm\right)\)

b) ta có : \(1+sin^2a+cos^2a=1+1=2\left(đpcm\right)\)

c) ta có : \(sina-sina.cos^2a=sina\left(1-cos^2a\right)=sina.sin^2a=sin^3a\left(đpcm\right)\)

d) đề thiếu

15 tháng 7 2015

Ôi mình ko giỏi phấn cos sin cho lắm