Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2-2x}{1-x}\right)\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)}{x-1}\)
\(=\dfrac{-6}{\left(x+2\right)\left(x-1\right)}\)
b: Thay x=-4 vào A, ta được:
\(A=-\dfrac{6}{\left(-4+2\right)\left(-4-1\right)}=\dfrac{-6}{-2\cdot\left(-5\right)}=\dfrac{-6}{10}=\dfrac{-3}{5}\)
a, ĐKXĐ: x≠±2
A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)
A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)
b, |x|=\(\dfrac{1}{2}\)
TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)
TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)
Thay \(\dfrac{1}{2}\), \(\dfrac{-1}{2}\) vào A ta có:
\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)
\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)
c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)2 < 0
⇔ {x-2>0 ⇔ {x>2
[ [
{x+2<0 {x<2
⇔ {x-2<0 ⇔ {x<2
[ [
{x+2>0 {x>2
⇔ x<2
Vậy x<2 (trừ -2)
\(B=\dfrac{a}{x^2+ax}+\dfrac{a}{x^2+3ax+2a^2}+\dfrac{a}{x^2+5ax+6a^2}+\dfrac{a}{x^2+7ax+12a^2}+\dfrac{a}{x^2+9ax+20a^2}\)
\(=\dfrac{a}{x\left(x+a\right)}+\dfrac{a}{\left(x+a\right)\left(x+2a\right)}+\dfrac{a}{\left(x+2a\right)\left(x+3a\right)}+\dfrac{a}{\left(x+3a\right)\left(x+4a\right)}+\dfrac{a}{\left(x+4a\right)\left(x+5a\right)}\)
\(=\dfrac{5a}{x^2+5ax}\)