\(\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+1}+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2019

\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-4}+\frac{\sqrt{x}-10}{x-4}\)

\(A=\frac{x+2\sqrt{x}+x-3\sqrt{x}+2+\sqrt{x}-10}{x-4}\)

\(A=\frac{2x-8}{x-4}=\frac{2\left(x-4\right)}{x-4}=2\)

\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{\left(3\sqrt{3}+4\right)^2}}\)

\(B=43+24\sqrt{3}-8\sqrt{20+6\sqrt{3}+8}\)

\(B=43+24\sqrt{3}-8\sqrt{28+6\sqrt{3}}\)

\(B=43+24\sqrt{3}-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)

\(B=43+24\sqrt{3}-24\sqrt{3}-8\)

\(B=35\)

2 tháng 4 2019

Nguyễn Việt Lâm giúp mk nhá, tks bn nhìu :>>

15 tháng 8 2016

a) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

b) \(\frac{x-1}{\sqrt{y}-1}\cdot\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}+1}\cdot\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}+1}\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

15 tháng 8 2016

a)\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x+1}\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b)\(\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}\cdot\frac{\sqrt{\left(\sqrt{y}-1\right)^{2^2}}}{\sqrt{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

11 tháng 7 2017

a, \(P=\frac{x-4}{\sqrt{x}\left(\sqrt{x-2}\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{x-2\sqrt{x}}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow P=\frac{\sqrt{4+2\sqrt{3}}+2}{4+2\sqrt{3}-2\sqrt{4+2\sqrt{3}}}\)

\(=\frac{\sqrt{3}+1+2}{4+2\sqrt{3}-2\left(\sqrt{3}+1\right)}=\frac{3+\sqrt{3}}{2}\)

C. \(P>0\Rightarrow\frac{\sqrt{x}+2}{x-2\sqrt{x}}>0\Rightarrow x-2\sqrt{x}>0\Rightarrow x>4\)

8 tháng 10 2019

c,C= \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\left(x\ge1\right)\)

=\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

=\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\) (1)

TH1: \(\sqrt{x-1}< 1\) hay \(1\le x< 2\)

Từ (1)=>C= \(\sqrt{x-1}+1+1-\sqrt{x-1}\)=2

TH2: \(\sqrt{x-1}\ge1\) hay \(x\ge2\)

Từ (1) =>C=\(\sqrt{x-1}+1+\sqrt{x-1}-1\)=\(2\sqrt{x-1}\)

d, D=\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{13+30\sqrt{2}+\sqrt{8+2\sqrt{8}+1}}=\sqrt{13+30\sqrt{2}+\sqrt{\left(\sqrt{8}+1\right)^2}}\)

=\(\sqrt{13+30\sqrt{2}+\sqrt{8}+1}=\sqrt{14+30\sqrt{2}+2\sqrt{2}}\)

=\(\sqrt{14+32\sqrt{2}}\)

8 tháng 10 2019

a)\(\frac{x-y}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

b)\(\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)