Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn:
\(A=5^0+5^1+5^2+...+5^{99}+5^{50}\)
\(5A=5^1+5^2+5^3+...+5^{51}\)
\(5A-A=\left(5^1+5^2+5^3+...+5^{51}\right)-\left(5^0+5^1+5^2+...+5^{50}\right)\)
\(4A=5^{51}-5^0\)
\(=>A=\left(5^{51}-5^0\right):4\)
Vậy : \(A=\left(5^{51}-5^0\right):4\)
-5B=(-5)1+(-5)2+(-5)3+...+(-5)2018
-5B-B=[(-5)1+(-5)2+...+(-5)2018] - [(-5)0+(-5)1+...+(-5)2017]
-6B=(-5)2018-(-5)0 = (-5)2018-1
B= [(-5)2018-1]:-6
Anh học tốt nha ( em mới lớp 6)
Bài 2:
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(5A=5+5^2+...+5^{51}\)
\(\Leftrightarrow4A=5^{51}-1\)
hay \(A=\dfrac{5^{51}-1}{4}\)
Bài 3:
\(S=\left(1^2+2^3+3^3+...+10^2\right)\cdot2=385\cdot2=770\)
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5^1+5^2+5^3+5^4+...+5^{51}\)
\(4A=5A-A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
b/
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\frac{1}{2}B=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{100}\)
\(\frac{1}{2}B=B-\frac{1}{2}B=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\)
\(B=\frac{1}{2}B\cdot2=\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\right].2\)
\(B=1-\frac{1}{2^{99}}\)
\(A=1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A-A=2A=\left(3+3^2+3^3+...+3^{100}\right)-\left(\text{}\text{}\text{}1+3^2+3^3+...+3^{99}\right)\)
\(\Rightarrow2A=3^{100}-1\Rightarrow A=\frac{3^{100}-1}{2}\)
\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+...+\left(-5\right)^{2017}\)
\(-5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2017}\)
\(-6B=\left(-5\right)^{2017}-1\)
\(B=\frac{\left(-5\right)^{2017}-1}{-6}\)
Ta có : B = (-5)^0 + (-5)^1 + ......+ (-5)^2017
(-5)B = (-5)^1 + (-5)^2 + .......+ (-5)^2018
(-4)B = (-5)^0- (-5)^2018
B = 1 - (-5)^2018 / (-4)
Nếu có sai sót gì mong các bạn bỏ qua
a, ta có A.5 = 5 ( 1+5 +52 +...........+549 +550)
5A = 5 +52 +53 +............... + 550 +551
5A-A = (5 +52 +53 +............+ 551) - (1+5+52 +......+550)
4A = 551 -1
A =\(\dfrac{5^{51}-1}{4}\)
vậy A =
b, B= \(\dfrac{4^5.9^4-2.6^9}{2^{10}.3+6^8.20}\)
= \(\dfrac{\left(2^2\right)^5.\left(3^3\right)^4-2.6^9}{2^{10}.3+6^8.20}\)
=\(\dfrac{2^{10}.3^{12}-2.6^9}{2^{10}.3+6^8.20}\)
= \(\dfrac{3^{11}-6}{10}\)
a. \(25.5^3.\frac{1}{625}.5^2=5^2.5^3.\frac{1}{5^4}.5^2=\frac{5^7}{5^4}=5^3\)
b. \(4.32:\left(2^3.\frac{1}{16}\right)=2^2.2^5:2^3:\frac{1}{2^4}=\frac{2^4}{2^4}=1\)
c. \(5^2.3^5.\left(\frac{3}{5}\right)^2=5^2.3^5.3^2.\frac{1}{5^2}==\frac{5^2}{5^2}.3^7=3^7\)
d. \(\left(\frac{1}{7}\right)^2.\frac{1}{7}.49^2=\frac{1}{7^3}.7^4=\frac{7^4}{7^3}=7\)
\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{49}+\left(-5\right)^{50}\\ -5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+\left(-5\right)^4+...+\left(-5\right)^{50}+\left(-5\right)^{51}\\ B+5B=\left[\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{49}+\left(-5\right)^{50}\right]-\left[\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+\left(-5\right)^4+...+\left(-5\right)^{50}+\left(-5\right)^{51}\right]\\ 6B=\left(-5\right)^0-\left(-5\right)^{51}\\ B=\frac{1-\left(-5\right)^{51}}{6}\)