Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{19}{20}\)
\(=\dfrac{1.2.3....19}{2.3.4.....20}\)
\(=\dfrac{1.2.3....19:\left(2.3.....19\right)}{2.3.4.....20:\left(2.3.4.....19\right)}\)
\(=\dfrac{1}{20}\)
1.
a) \(2^x=128\)
\(2^x=2^7\)
\(=>x=7\)
b) \(8^{x-1}=64\)
\(8^{x-1}=8^2\)
\(=>x-1=2\)
\(x=2+1\)
\(=>x=3\)
c) \(3+3^x=30\)
\(3^x=30-3\)
\(3^x=27=3^3\)
\(=>x=3\)
d) \(\left(x+2\right)=64\) -> đề có thiếu không vậy?
e) \(3^2.x=3^5\)
\(x=3^5:3^2\)
\(=>x=3^3=27\)
f) \(\left(2x-1\right)^3=343\)
\(\left(2x-1\right)^3=7^3\)
\(=>2x-1=7\)
\(2x=7+1\)
\(2x=8\)
\(x=8:2\)
\(=>x=4\)
\(#Wendy.Dang\)
a,\(2^x\)=128 b,\(8^{x-1}\)=64 c,3+\(3^x\)=30 d,x+2=64
\(2^7\)=128 \(8^{x-1}\)=\(8^2\) \(3^x\)=30-3 x=64-2
=>x=7 =>x-1=2 \(3^x\)=27 x=62
x=2+1=3 \(3^x\)=\(3^3\)
=>x=3
e,\(3^2\).x=\(3^5\) f,(2x-\(1^3\))=343
x=\(3^5\):\(3^2\) 2x=1+343
x=27 2x=344
x=344:2
x=172
a) Ta có: \(\dfrac{7\cdot25}{14\cdot10}\)
\(=\dfrac{7\cdot5\cdot5}{7\cdot2\cdot2\cdot5}\)
\(=\dfrac{5}{4}\)
b) Ta có: \(\dfrac{24\cdot15-14\cdot9}{36\cdot12}\)
\(=\dfrac{9\cdot8\cdot5-14\cdot9}{36\cdot12}\)
\(=\dfrac{9\cdot\left(8\cdot5-14\right)}{9\cdot4\cdot12}\)
\(=\dfrac{40-14}{4\cdot12}\)
\(=\dfrac{13}{24}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}=\frac{1.\left(2.3.4...19\right)}{\left(2.3.4...19\right).20}=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{2}{3}\right).\left(1-\frac{3}{4}\right).....\left(1-\frac{19}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)
Ta thấy hai phân số liên tiếp nhau, mẫu phân số thứ nhất giống với tử phân số thứ hai nên ta sẽ rút gọn chúng.
\(\Rightarrow B=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1.\left(2.3.4...19\right)}{\left(2.3.4...19\right).20}\)
\(B=\frac{1}{20}.\)
B=( 1-1/2) (1-1/3).(1-1/4)....(1-1/20)
B=\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times....\times\frac{19}{20}\)
\(B=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\)
\(B=\frac{1}{20}\)
1: \(\dfrac{-7}{4}\cdot\dfrac{2}{9}=\dfrac{-14}{36}=\dfrac{-7}{18}\)
2: \(=\dfrac{12}{13}\cdot\dfrac{26}{5}=\dfrac{24}{5}\)
3: \(=\dfrac{20}{11}\cdot\dfrac{55}{21}=\dfrac{100}{21}\)
4: \(=\dfrac{-40}{240}=\dfrac{-1}{6}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1}{20}\)
B=(1-1/2)(1-1/3)........(1-1/20)
B=1/2.2/3.......19/20
B=1/20