K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

Ta có: \(\sqrt{2+\sqrt{3}}=\frac{1}{\sqrt{2}}.\sqrt{4+2\sqrt{3}}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}\)

=> \(A=\frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{3}+1}{2\sqrt{6}}}=\frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}}=\frac{\sqrt{3}+1}{2}\)

25 tháng 8 2020

giải được chết liền

what the hell

??????????????

26 tháng 12 2018

=1.36603

\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\frac{2\sqrt{3}+\sqrt{18}+2\sqrt{3}-\sqrt{18}}{4-6}\right)-\frac{1}{\sqrt{2}}.\)

\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}.\left(2\sqrt{3}\right)-\frac{1}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{2\sqrt{6}-6}{\sqrt{2}+1}-\frac{1}{\sqrt{2}}\)

12 tháng 10 2018

\(\frac{\sqrt{2-\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right).\)

\(=\frac{2\sqrt{2-\sqrt{3}}}{4}:\left(\frac{2\sqrt{2+\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{2\sqrt{2+\sqrt{3}}}{4\sqrt{3}}\right)\)

\(=\frac{\sqrt{4-2\sqrt{3}}}{4}:\left(\frac{\sqrt{4+2\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{4+2\sqrt{3}}}{4\sqrt{3}}\right)\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{4}:\left[\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4\sqrt{3}}\right]\)

\(=\frac{\sqrt{3}-1}{4}:\left[\frac{\sqrt{6}\left(\sqrt{3}+1\right)}{4\sqrt{6}}-\frac{2.4}{4\sqrt{6}}+\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{4\sqrt{6}}\right]\)

\(=\frac{\sqrt{3}-1}{4}:\frac{\sqrt{18}+\sqrt{6}-8+\sqrt{6}+\sqrt{2}}{4\sqrt{6}}\)

\(=\frac{\sqrt{3}-1}{4}.\frac{4\sqrt{6}}{\sqrt{2}\left(\sqrt{9}+2\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{2}\left(\sqrt{3}+1\right)^2}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)^2}\)............

30 tháng 6 2017

=\(\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{2}}:\left(\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{6}}\right)\)

=\(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{2}}:\left(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{6}}\right)\)

=\(\frac{\sqrt{3}+1}{2\sqrt{2}}:\left(\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{3}+1}{2\sqrt{6}}\right)\)

=\(\frac{\sqrt{3}+1}{2\sqrt{2}}:\frac{\sqrt{3}.\left(\sqrt{3}+1\right)-2.2+\sqrt{3}+1}{2\sqrt{6}}\)

=\(\frac{\sqrt{3}+1}{2\sqrt{2}.}.\frac{2\sqrt{6}}{2\sqrt{3}}=\frac{\sqrt{3}+1}{2}\)

22 tháng 8 2017

\(\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)

\(=\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{6\left(2+\sqrt{3}\right)}-4+\sqrt{2\left(2+\sqrt{3}\right)}}{2\sqrt{6}}\right)\)

\(=\frac{\sqrt{2+\sqrt{3}}}{2}.\left(\frac{2\sqrt{6}}{\sqrt{12+6\sqrt{3}}-4+\sqrt{4+2\sqrt{3}}}\right)\)

\(=\frac{\sqrt{6\left(2+\sqrt{3}\right)}}{\left|\sqrt{3}+3\right|-4+\left|\sqrt{3}+1\right|}\)

\(=\frac{\left|\sqrt{3}+3\right|}{\sqrt{3}+3-4+\sqrt{3}+1}\)

\(=\frac{\sqrt{3}+3}{2\sqrt{3}}\)

22 tháng 8 2017

\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7-2\sqrt{10}}}\)

\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}\right)^2+6\sqrt{2}+9}-\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{6}+\left(\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{10}+\left(\sqrt{2}\right)^2}}\)

\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}\)

\(=\frac{\sqrt{3}+\sqrt{2}+3-\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}+\sqrt{2}}\)

\(=\frac{3}{2\sqrt{2}+1}\)

8 tháng 7 2018

\(a.\sqrt{\frac{2-\sqrt{3}}{2}}+\frac{1-\sqrt{3}}{2}\)

\(=\sqrt{\frac{2\left(2-\sqrt{3}\right)}{4}}+\frac{1-\sqrt{3}}{2}\)

\(=\frac{\sqrt{4-2\sqrt{3}}}{2}+\frac{1-\sqrt{3}}{2}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}+\frac{1-\sqrt{3}}{2}\)

\(=\frac{\sqrt{3}-1+1-\sqrt{3}}{2}\) ( Vì \(\sqrt{3}-1>0\))

\(=0\)

b) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{2-\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}+\frac{\sqrt{3}}{3}-\frac{2\left(3-\sqrt{3}\right)}{3^2-\left(\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+\sqrt{3}-\frac{3-\sqrt{3}}{3}\)

\(=\frac{6-3+\sqrt{3}}{3}\)

\(=\frac{3+\sqrt{3}}{3}=\frac{\sqrt{3}+1}{\sqrt{3}}\)

c) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)

\(=\frac{2\left(2-\sqrt{3}\right)}{1}+\frac{13\left(1+\sqrt{3}\right)}{13}+2\sqrt{3}\)

\(=4-2\sqrt{3}+1-\sqrt{3}+2\sqrt{3}\)

\(=5-\sqrt{3}\)

8 tháng 7 2018

ban mai thanh xuân ơi cầu c sai

10 tháng 8 2015

\(12\sqrt{\frac{4}{3}}-\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{4-6\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}\)

\(=12.\frac{2}{\sqrt{3}}-\frac{\left(3+\sqrt{2}\right)\left(8-2\sqrt{2}\right)}{9-2}-\frac{\sqrt{2}\left(4-6\sqrt{2}\right)}{2}+\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{3-4}\)

\(=8\sqrt{3}-\left(4+2\sqrt{2}\right)-\left(2\sqrt{2}-6\right)+\left(-3-2\sqrt{3}\right)\)

\(=8\sqrt{3}-4-2\sqrt{2}-2\sqrt{2}+6-3-2\sqrt{3}\)

\(=6\sqrt{3}-4\sqrt{2}-1\)

 

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)