Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\) = \(-\sqrt{3}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\) = \(7\sqrt{2}-6\sqrt{2}+\sqrt{2}\) = \(2\sqrt{2}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) = \(3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) = \(6\sqrt{a}\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) = \(4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
= \(4\sqrt{b}-5\sqrt{10b}\)
\(=7\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}=7\sqrt{b}-5\sqrt{10b}\)
Bài 1:
\(\sqrt{27a^2}=3a\sqrt{3}\)
Bài 2:
\(\dfrac{2}{3}\sqrt{3xy}=\sqrt{3xy\cdot\dfrac{4}{9}}=\sqrt{\dfrac{4}{3}xy}\)
Bài 3:
\(=4\sqrt{b}+2\cdot2\sqrt{10b}-3\cdot3\sqrt{10b}=4\sqrt{b}-5\sqrt{10b}\)
a) Xét \(x^2-4=\left(\sqrt{\frac{a}{b}}\right)^2+\left(\sqrt{\frac{b}{a}}\right)^2+2-4\)
\(=\left(\sqrt{\frac{a}{b}}\right)^2+\left(\sqrt{\frac{b}{a}}\right)^2-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge0\)
b) \(\sqrt{x^2-4}=\sqrt{\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2}=\left|\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right|\)
- Nếu a < b < 0 thì \(\sqrt{\frac{a}{b}}< \sqrt{\frac{b}{a}}\Rightarrow\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}< 0\Rightarrow\sqrt{x^2-4}=\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}\)
- Nếu b < a < 0 thì \(\sqrt{\frac{b}{a}}< \sqrt{\frac{a}{b}}\Rightarrow\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}>0\Rightarrow\sqrt{x^2-4}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\)
a) Vì a<0 , b<0 => \(\frac{a}{b}>0;\frac{b}{a}>0\Rightarrow\sqrt{\frac{a}{b}}>0;\sqrt{\frac{b}{a}}>0\)
Áp dụng bất đẳng thức cô si ta có:
\(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\ge2\sqrt{\sqrt{\frac{a}{b}}\cdot\sqrt{\frac{b}{a}}}=2\)
=> \(\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)^2\ge4\)
Hay \(x^2\ge4\)
\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}=4\sqrt{b}+2.2\sqrt{10b}-3.3\sqrt{10b}=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}=4\sqrt{b}-5\sqrt{10b}\)
\(A=\sqrt{4^2b}+2\sqrt{2^2\cdot10b}-3\sqrt{3^2\cdot10b}=4\sqrt{b}+4\sqrt{10}\cdot\sqrt{b}-9\sqrt{10}\cdot\sqrt{b}\)
\(=4\sqrt{b}-5\sqrt{10}\sqrt{b}=\left(4-5\sqrt{10}\right)\sqrt{b}\)
Rut gon A = √16b+2√40b−3√90bva`b≥0
A=√42b+2√22·10b−3√32·10b=4√b+4√10·√b−9√10·√b
=4√b−5√10√b=(4−5√10)√b