K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải:

a)

\((2a-5b)^2+(2a+5b)^2\)

\(=4a^2-2.2a.5b+25b^2+4a^2+2.2a.5b+25b^2\)

\(=8a^2+50b^2=2(4a^2+25b^2)\)

b)

\((a-2b-3c)^2-(a-2b+3c)^2\)

\(=[(a-2b-3c)-(a-2b+3c)][(a-2b-3c)+(a-2b+3c)]\)

\(=-6c(2a-4b)=12c(2b-a)\)

11 tháng 8 2018

Câu a : \(\left(2a-3b\right)^2-\left(2a+3b\right)^2\)

\(=\left(2a-3b+2a+3b\right)\left(2a-3b-2a-3b\right)\)

\(=4a.-6b=-24ab\)

Câu b : \(\left(a-2b-3c\right)^2-\left(a-2b+3c\right)^2\)

\(=\left(a-2b-3c+a-2b+3c\right)\left(a-2b-3c-a+2b-3c\right)\)

\(=\left(2a-4b\right).\left(-6c\right)\)

\(=2\left(a-2b-3c\right)\)

12 tháng 8 2018

DƯƠNG PHAN KHÁNH DƯƠNG cậu ơi cậu giải thích cho mình cách phân tích của câu a với câu b đc k ạ ?

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(2b+3c+2c+3a+2a+3b\right)^2}{a+b+c}\)

\(=\frac{\left(5a+5b+5c\right)^2}{a+b+c}=\frac{\left[5\left(a+b+c\right)\right]^2}{a+b+c}\)

\(=\frac{25\left(a+b+c\right)^2}{a+b+c}=25\left(a+b+c\right)=VP\)

=> đpcm

Đẳng thức xảy ra <=> a = b = c

NV
19 tháng 6 2019

\(8VT=4\left(a^2b+b^2c+c^2a+abc\right)\left(2ab^2+2bc^2+2ca^2+2abc\right)\le\left(a^2b+b^2c+c^2a+2ab^2+2bc^2+2ca^2+3abc\right)^2\)

\(\Rightarrow VT\le\frac{1}{32}\left(2a^2b+2b^2c+2c^2a+4ca^2+4ab^2+4bc^2+6abc\right)^2\)

\(\Rightarrow VT\le\frac{1}{32}\left(2a^2b+2b^2c+2c^2a+4ca^2+4ab^2+4bc^2+9abc\right)^2\)

\(\Rightarrow VT\le\frac{1}{32}\left[\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)\right]^2\)

\(\Rightarrow VT\le\frac{1}{512}\left[\left(a+2b\right)\left(4b+8c\right)\left(c+2a\right)\right]^2\)

\(\Rightarrow VT\le\frac{1}{512}\left(\frac{a+2b+4b+8c+c+2a}{3}\right)^6=\frac{1}{512}\left(a+2b+3c\right)^6=\frac{4^6}{512}=8\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\)

20 tháng 6 2019

Sao có dòng 2 vậy?