Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{132639}{173451}\)
\(A=\frac{132639:10203}{173451:10203}\)
\(A=\frac{13}{17}\)
\(B=\frac{16515}{20919}\)
\(B=\frac{16515:1101}{20919:1101}\)
\(B=\frac{15}{19}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+........+\frac{1}{3^n}\)
\(3S=3+1+\frac{1}{3}+.......+\frac{1}{3^{n-1}}\)
\(\Rightarrow3S-S=\left(3+1+\frac{1}{3}+......+\frac{1}{3^{n-1}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^n}\right)\)
\(\Rightarrow2S=3-\frac{1}{3^n}\Rightarrow2S=\frac{3^{n+1}-1}{3^n}\Rightarrow S=\frac{3^{n+1}-1}{2.3^n}\)
\(a.\frac{4.7}{9.32}=\frac{4.7}{4.8.9}=\frac{7}{8.9}=\frac{7}{72}\)
\(b.\frac{990}{2610}=\frac{990\div90}{2610\div90}=\frac{11}{29}\)
\(c.\frac{374}{-506}=\frac{374\div\left(-22\right)}{-506\div\left(-22\right)}=\frac{-17}{23}\)
\(\frac{4\cdot7}{9\cdot32}=\frac{4\cdot7}{9\cdot4\cdot8}=\frac{7}{9\cdot8}=\frac{7}{72}\)
\(\frac{990}{2610}=\frac{2\cdot3^2\cdot5\cdot11}{2\cdot3^2\cdot5\cdot29}=\frac{11}{29}\)
\(\frac{374}{-506}=-\frac{374}{506}=\frac{2\cdot11\cdot17}{2\cdot11\cdot23}=-\frac{17}{23}\)
a = \(\frac{-8^3.6^4}{18^{12}}\)
= \(\frac{-2^9.2^4.3^4}{2^{12}.3^{24}}\)
= \(\frac{-2^{13}.3^4}{2^{12}.3^{24}}\)
= \(\frac{-2}{3^{20}}\)
Hk tốt
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)
\(B=\frac{1}{20}\)
ta co :a)132639/173451=132639:10203/173451:10203=13/17
b)16515/20919=16515:1101/20919:1101=15/19
13/17
15/19