\(\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)

b,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc+a^2c+b^2c+c^3-abc-bc^2-ac^2\)

\(=a^3+b^3+c^3-3abc\)

b: \(=12x^{2n-1}-3x^n-12x^{2n-1}+2x^{n+1}\)

\(=-3x^n+2x^{n+1}\)

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

1 tháng 11 2016

mày điên à, làm gì có câu hỏi kiểu này?

1 tháng 11 2016

mày bị điên rồi hả câu hỏi thế này làm gì có người giải được

25 tháng 7 2017

Câu 1: \(3x+2\left(5-x\right)=0\)

\(\Rightarrow3x+10-2x=0\)

\(\Rightarrow x+10=0\)

\(\Rightarrow x=-10\).

Câu 2: \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

\(\Rightarrow2x\left(5-3x\right)-2x\left(5-3x\right)-3\left(x-7\right)=0\)

\(\Rightarrow\left(2x-2x\right)\left(5-3x\right)-3\left(x-7\right)=3\)

\(\Rightarrow-3\left(x-7\right)=3\)

\(\Rightarrow x-7=-1\)

\(\Rightarrow x=6.\)

25 tháng 7 2017

Câu 3:

Áp dụng hằng đẳng thức mở rộng có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=a^3+b^3+c^3-3abc.\)

Câu 4: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)

\(=\left(3x^2-2y^2\right)\left[3x^2-\left(3x^2+2y^2\right)\right]\)

\(=\left(3x^2-2y^2\right)\left(-2y^2\right)\)

\(=-6x^2y^2+4y^3.\)

Câu 5:

Ta có: \(R=\left(2x-3\right)\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\)

\(=\left(8x-12+12x^2-18x\right)-\left(24x-12x^2-12+6x\right)\)

\(=12x^2-10x-12-24x+12x^2+12-6x\)

\(=24x^2-40x.\)

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

9 tháng 8 2018

Thay \(ab+bc+ca=1\) ta có:

\(1+a^2=ab+bc+ca+a^2=b\left(c+a\right)+a\left(c+a\right)=\left(c+a\right)\left(a+b\right)\)

Tương tự: \(1+b^2=\left(b+c\right)\left(a+b\right);\) \(1+c^2=\left(c+a\right)\left(b+c\right)\)

\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

\(\Rightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}=1\). Vậy biểu thức đó rút gọn lại bằng 1.

25 tháng 9 2017

a) \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)

\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)

\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)

\(=x^3-16x^2+25x\)

b) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)

\(=a^2+b^2+c^2-2ab+2ac-2bc-\left(b^2-2bc+c^2\right)+2ab-2ac\)

\(=a^2+b^2+c^2-2ab+2ac-2bc-b^2+2bc-c^2+2ab-2ac\)

\(=a^2\)

25 tháng 9 2017

Siêu sao bóng đá Lần sau nhớ gõ Latex nhé, tiêu đề bạn nên viết rõ ra như là Toán lớp 8 nhân đa thứ với đa thức chẳng hạn

27 tháng 9 2019

nhân ra hết là đc

27 tháng 9 2019

kệ chẳng quan tâm