Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+\left|x-3\right|\)
\(=x+3-\left(x-3\right)\)
\(=x+3-x+3\)
\(=6\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
\(=x+2-\left(-x\right)\)
\(=x+2+x\)
\(=2x+2=2\left(x+1\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)
\(=\frac{\left|x-1\right|}{x-1}\)
\(=\frac{x-1}{x-1}=1\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)
\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)
\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)
\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)
\(=\left|x-2\right|-1\)
\(=-\left(x-2\right)-1\)
\(=-x+2-1\)
\(=-x+1=-\left(x-1\right)\)
a/\(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+\left|x-3\right|=x+3+3-x=6\)
b/ \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\left|x\right|=\left|x+2\right|-\left|x\right|=-x-2-\left(-x\right)=-x-2+x=-2\)
c/ \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\cdot\left(x-1\right)=\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=\left|x-1\right|\)
d/ \(\left|x-2\right|+\dfrac{\sqrt{x^2-4x+4}}{x-2}=2-x+\dfrac{\sqrt{\left(x-2\right)^2}}{x-2}=2-x+\dfrac{\left|x-2\right|}{x-2}=2-x+\dfrac{-\left(x-2\right)}{x-2}=2-x-1=1-x\)
a) \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}}}\)
\(=\sqrt{1+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{2}\right)}=1\)
b) \(A=\sqrt{x^2-6x+9}-\dfrac{x^2-9}{\sqrt{9-6x+x^2}}\)
\(=\left|x-3\right|-\dfrac{\left(x-3\right)\left(x+3\right)}{\left|x-3\right|}\)
Th1: x-3 < 0
\(A=\left(3-x\right)-\dfrac{\left(x-3\right)\left(x+3\right)}{3-x}=3-x+x-3=0\)
Th2: x-3 > 0
\(A=x-3-\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x-3-\left(x+3\right)=-6\)
c)
Đk: x >/ 1 \(B=\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
\(=\dfrac{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
\(=\dfrac{\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|}{\left|x-2\right|}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
Th1: \(x-2\ge0\Leftrightarrow x\ge2\)
\(B=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}+1}{x-2}\cdot\dfrac{x-2}{\sqrt{x-1}}=\dfrac{2}{\sqrt{x-1}}\)
Th2: \(x-2\le0\Leftrightarrow x\le2\)
kết hợp với đk, ta được: 1 \< x \< 2
\(=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}-1}{2-x}\cdot\dfrac{x-2}{\sqrt{x-1}}=0\)
d) \(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
chẳng biết có sai sót gì 0 nữa, xin lỗi tớ 0 xem lại đâu vì chán quá!
a. 1/2*(-x^5)
b. (10-x)^5
c. x-4+(4-x) = 0
d. 6-2x-(3-x) = 3-x
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
a) \(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+x-3=2x\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}=x+2-x=2\)
c) \(\sqrt{\frac{x^2-2x+1}{x-1}}=\sqrt{\frac{\left(x-1\right)^2}{x-1}}=\sqrt{x-1}\)
(Nhớ k cho mình với nhá!)
a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)
Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)
\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)
Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé
https://giaingay.com.vn/downapp.html