Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)
\(=6x^2+12x+x+2-6x^2+10x\)
\(=23x+2\)
a) (6x + 1)(x + 2) - 2x(3x - 5)
= 6x2 + 12x + x + 2 - 6x2 + 10x
= (6x2 - 6x2) + (12x + x + 10x) + 2
= 23x + 2
b) (2x - 1)2 - (2x - 3)(2x + 3)
= 4x2 - 4x + 1 - 4x2 + 9
= (4x2 - 4x2) - 4x + (1 + 9)
= -4x + 10
c) (2x - 3)3 - (3x + 1)(5 - 4x) - 16x2
= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2
= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5
= 8x3 - 40x2 + 43x - 5
d) (3x + 2) - (x - 5) - x(3x - 13)
= 3x + 2 - x + 5 - 3x2 + 13x
= (3x - x + 13x) + (2 + 5) - 3x2
= 15x + 7 - 3x2
Bài 1 :
a) \(x^4-4x^2-4x-1\)
\(=x^4-\left(4x^2+4x+1\right)\)
\(=x^4-\left(2x+1\right)^2\)
\(=\left(x^2-2x-1\right)\left(x^2+2x+1\right)\)
b) \(x^2+2x-15\)
\(=x^2+2x+1-16\)
\(=\left(x+1\right)^2-4^2\)
\(=\left(x+1+4\right)\left(x+1-4\right)=\left(x+5\right)\left(x-3\right)\)
c) \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
B2:
a) \(2\left(x-1\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=2\left(x^2-2x+1\right)-\left(4x^2-9\right)\)
\(=2x^2-4x+2-4x^2+9\)
\(=-2x^2-4x+11\)
b) \(\left(x+3\right)^2-2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(x+3-x+3\right)^2=6^2=36\)
c) \(4\left(x-1\right)\left(x+3\right)+5\left(2x+1\right)^2-2\left(5-3x\right)^2\)
\(=4\left(x^2+2x-3\right)+5\left(4x^2+4x+1\right)-2\left(9x^2-30x+25\right)\)
\(=4x^2+8x-12+20x^2+20x+5-18x^2+60x-50\)
\(=6x^2+88x-57\)
Bài 1:
a: \(A=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-5+20x-4x^2-12x-9\)
\(=-30\)
b: \(B=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
\(=-175\)
d: \(D=25x^2-20x+4-36x^2-12x-1+11\left(x^2-4\right)-48+32x\)
\(=-11x^2-32x+3-48+32x+11x^2-44\)
=-89
a) (2x - 1)(3x + 5) - 2(-4x + 1)2 = 6x2 + 10x - 3x - 5 - 2(16x2 - 8x + 1) = 6x2 - 3x - 5 - 32x2 + 16x - 2 = -26x2 + 13x - 7
b) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\frac{x+4}{x}\)
c) \(\frac{2x-9}{x^2-5x+6}+\frac{2x+1}{x-3}+\frac{x+3}{2-x}\)
= \(\frac{2x-9}{x^2-2x-3x+6}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{2x-9+2x^2-3x-2-x^2+9}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{x^2-2x+x-2}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\frac{x+1}{x-3}\)
d) (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)
= (x - 1 - x - 1)[(x - 1)2 + (x - 1)(x + 1) + (x + 1)2] + 6(x2 - 1)
= -2(x2 - 2x + 1 + x2 - 1 + x2 + 2x + 1) + 6x2 - 6
= -2(3x2 + 1) + 6x2 - 6
= -6x2 - 2 + 6x2 - 6
= -8
e) (2x + 7)2 - (4x + 14)(2x - 8) + (8 - 2x)2
= (2x + 7)2 - 2(2x + 7)(2x - 8) + (2x - 8)2
= (2x + 7 - 2x + 8)2
= 152 = 225
a ) \(\left(2x-3\right)^3-x\left(2x-1\right)^2\)
\(=\left(2x\right)^3-3.\left(2x\right)^2.3+3.2x.3^2-3^3-x.\left(2x\right)^2-2.2x.1+1^2\)
\(=8x^3-3.4x^2.3+3.2x.9-27-x.4x^2-2.2x.x+1\)
\(=8x^3-36x^2+54x-27-4x^3-4x^2+1\)
\(=4x^3-40x^2+54x-26\)
a ) (2x−3)^3−x(2x−1)^2
=(2x)^3−3.(2x)^2.3+3.2x.3^2−33^−x.(2x)^2−2.2x.1+1^2
=8x^3−3.4x^2.3+3.2x.9−27−x.4x^2−2.2x.x+1
=8x^3−36x^2+54x−27−4x^3−4x2+1
=4x^3−40x^2+54x−26
a) Ta có: \(A=\left(2x+3\right)^2-2\left(x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)
\(=4x^2+12x+9-2\left(2x^2+5x+6x+15\right)+4x^2+20x+25\)
\(=8x^2+32x+34-2\left(2x^2+11x+15\right)\)
\(=8x^2+32x+34-4x^2-22x-30\)
\(=4x^2+10x-4\)
b) Sửa đề: \(B=\left(x^2+x+1\right)^2-\left(x^2-x+1\right)\left(x^2-1\right)\)
Ta có: \(B=\left(x^2+x+1\right)^2-\left(x^2-x+1\right)\left(x^2-1\right)\)
\(=x^4+x^2+1+2x^3+2x^2+2x-\left(x^4-x^2-x^3+x+x^2-1\right)\)
\(=x^4+3x^2+2x^3+2x+1-x^4+x^3-x+1\)
\(=3x^3+3x^2+x+2\)
c) Ta có: \(C=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)\)
\(=64x^3-48x^3+12x-1-64x^3-12x+48x^2+9\)
\(=8\)