![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
gía triij tuyệt đối của -3a+2a-1 = giá trị tuyệt đối của -a-1= -(a+1)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/
Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$
$\Rightarrow a=2k+1; b=3k+2; c=4k+3$
Khi đó:
$3a+3b-c=50$
$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$
$\Rightarrow 11k+6=50$
$\Rightarrow 11k=44\Rightarrow k=4$
Ta có:
$a=2k+1=2.4+1=9$
$b=3k+2=3.4+2=14$
$c=4k+3=4.4+3=19$
b/
$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$
$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$
Áp dụng TCDTSBN:
$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$
$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình không hiểu lắm ở dòng thứ 3 và 4 của câu a, bạn giải thích lại cho mình được không?
![](https://rs.olm.vn/images/avt/0.png?1311)
Có: \(\frac{a}{b}=\frac{5}{6}=>\frac{a}{5}=\frac{b}{6}\)
Đặt \(\frac{a}{5}=\frac{b}{6}=k=>\hept{\begin{cases}a=5k\\b=6k\end{cases}}\)
Thay vào ta có:
A=\(\frac{3.5k-2.6k}{2.5k-3.5k}=\frac{15k-12k}{10k-15k}=\frac{3k}{-5k}=\frac{-3}{5}\)
=> \(A=\frac{-3}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn điền thêm vào như thế này:
...................
A= 1-1/2^99 <1
Hay A<1
Vậy.........
Có. Chúng ta lí luận:
Vì \(1-\frac{1}{2^{99}}>1\)
\(\Rightarrow A>1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Vì \(\hept{\begin{cases}2a=3b\\4b=5c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{3}=\frac{b}{2}\\\frac{b}{5}=\frac{c}{4}\end{cases}}\) \(\Rightarrow\hept{\begin{cases}\frac{a}{15}=\frac{b}{10}\\\frac{b}{10}=\frac{c}{8}\end{cases}}\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{8}=\frac{2a}{30}=\frac{2c}{16}=\frac{2a-b-2c}{30-10-16}=\frac{4}{4}=1\)
\(\Rightarrow\hept{\begin{cases}a=15\\b=10\\c=8\end{cases}}\)
Câu 5 :
Vì \(\hept{\begin{cases}a=2b\\b=3c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{1}\\\frac{b}{3}=\frac{c}{1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{a}{6}=\frac{b}{3}\\\frac{b}{3}=\frac{c}{1}\end{cases}}\Rightarrow\frac{a}{6}=\frac{b}{3}=\frac{c}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{6}=\frac{b}{3}=\frac{c}{1}=\frac{2b}{6}=\frac{3c}{3}=\frac{a-2b+3c}{6-6+3}=\frac{6}{3}=2\)
\(\Rightarrow\hept{\begin{cases}a=2.6=12\\b=2.3=6\\c=2.1=2\end{cases}}\)
A= 3a+ 2a -1
A= 5a -1
HOK TOT
Với a ∈ Q , ta xét 2 trường hợp :
+) a ≥ 0 => | -3a | = 3a
=> A = 3a + 2a - 1 = 5a - 1
+) a < 0 => | -3a | = -3a
=> A = -3a + 2a - 1 = -a - 1