K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

có bộ gõ kí hiệu Toán mà :))

ĐK : a >= 0 ; a khác 36

\(K=\left[\frac{a+14\sqrt{a}+100}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}+\frac{\left(\sqrt{a}+6\right)\left(\sqrt{a}-6\right)}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}-\frac{\left(\sqrt{a}-7\right)\left(\sqrt{a}+7\right)}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}\right]\div\left(\frac{\sqrt{a}-6}{\sqrt{a}-6}-\frac{\sqrt{a}-7}{\sqrt{a}-6}\right)\)

\(=\frac{a+14\sqrt{a}+100+a-36-a+49}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}\div\frac{1}{\sqrt{a}-6}\)

\(=\frac{a+14\sqrt{a}+113}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}\cdot\left(\sqrt{a}-6\right)=\frac{a+14\sqrt{a}+113}{\sqrt{a}+7}\)

Để K = 2 thì \(\frac{a+14\sqrt{a}+113}{\sqrt{a}+7}=2\Rightarrow a+14\sqrt{a}+113=2\sqrt{a}+14\Leftrightarrow a+12\sqrt{a}+99=0\)

Với a >= 0 thì \(a+12\sqrt{a}+99\ge99>0\)=> Không có giá trị x thỏa mãn K = 2

Ta có : \(K=\frac{a+14\sqrt{a}+113}{\sqrt{a}+7}=\frac{\left(a+14\sqrt{a}+49\right)+64}{\sqrt{a}+7}=\frac{\left(\sqrt{a}+7\right)^2+64}{\sqrt{a}+7}\)

\(=\left(\sqrt{a}+7\right)+\frac{64}{\sqrt{a}+7}\ge2\sqrt{\left(\sqrt{a}+7\right)\cdot\frac{64}{\sqrt{a}+7}}=16\)( bđt AM-GM )

Dấu "=" xảy ra <=> \(\sqrt{a}+7=\frac{64}{\sqrt{a}+7}\Rightarrow a=1\left(tm\right)\). Vậy MinK = 16

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+2\right)}{2+\sqrt{2}+\sqrt{3}}\)

=1+căn 2

27 tháng 7 2023

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{4}\right)+\left(\sqrt{6}+\sqrt{3}\right)+\left(\sqrt{4}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)+\sqrt{3}\left(1+\sqrt{2}\right)+\sqrt{4}\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

23 tháng 8 2023

a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)

\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)

\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)

\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)

\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)

\(=-8\sqrt{3}\)

b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)

\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)

\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)

\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)

\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)

\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)

\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)

\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)

a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)

\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)

\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)

23 tháng 6 2019

\(a,\)\(đkxđ\Leftrightarrow x\ge0\)và \(x-9\ne0\Rightarrow x\ne9\)

\(A=\frac{6\sqrt{x}}{x-9}-\frac{5\sqrt{x}}{3-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+3}\)

\(\)\(=\frac{6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{6\sqrt{x}+5x+15\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{18\sqrt{x}+6x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{6\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{6\sqrt{x}}{\sqrt{x}-3}\)

23 tháng 6 2019

\(b,\)Để \(A>2\)\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>2\)

\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>\frac{12\sqrt{x}}{x-3}\)

\(\Rightarrow\frac{6\sqrt{x}-12\sqrt{x}}{\sqrt{x}-3}>0\)

\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}< 0\)

Vì \(\sqrt{x}\ge0;\)\(6>0\)\(\Rightarrow6\sqrt{x}\ge0\)

\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>0\Leftrightarrow\sqrt{x}-3< 0\)

\(\Rightarrow\sqrt{x}< 3\Rightarrow\sqrt{x}< \sqrt{9}\)\(\Leftrightarrow x< 9\)

Mà \(x\ge0\left(đkxđ\right)\)\(\Rightarrow0\le x< 9\)

21 tháng 8 2021

\(a,P=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}\right)\cdot\left(\dfrac{\sqrt{x}+2}{2}\right)^2\left(x\ge0;x\ne4\right)\\ P=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\\ P=\dfrac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

\(b,\)Ta có \(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

Thay vào \(P\), ta được:

\(P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+2}{\sqrt{\left(\sqrt{5}-1\right)^2}-2}=\dfrac{\sqrt{5}-1+2}{\sqrt{5}-1-2}=\dfrac{\sqrt{5}+1}{\sqrt{5}-3}\)

\(c,\)Để \(P< 1\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}< 1\)

\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-1< 0\\ \Leftrightarrow\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\sqrt{x}-2}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-2}< 0\\ \Leftrightarrow\sqrt{x}-2< 0\left(4>0\right)\\ \Leftrightarrow\sqrt{x}< 2\\ \Leftrightarrow x< 4\)

Vậy để \(P< 1\) thì \(x< 4\)

Tick nha

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}\right)\cdot\left(\dfrac{\sqrt{x}+2}{2}\right)^2\)

\(=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:

\(P=\dfrac{\sqrt{5}+1+2}{\sqrt{5}+1-2}=\dfrac{3+\sqrt{5}}{\sqrt{5}+1}=\dfrac{1+\sqrt{5}}{2}\)