Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+22+23+...+263
2A=2+22+23+...+263+264
\(-\)
\(A=1+2+2^2+....+2^{63}\)
\(A=2^{64}-1\)
Vậy A=264-1
1,
a, \(11.11.11=11^3\)
b,\(55.5.5.13.13=55.5^2.13^2\)
c, \(3^7.3^{10}.3^2=3^{\left(7+10+2\right)}=3^{19}\)
d, \(2^5.2^6.2^7.2.2.2=2^5.2^6.2^7.2^3\)
e, \(2^9:2^3.2^4=2^6.2^4=2^{10}\)
2,
\(4^9:8^5=8\)
\(32^{10}:8^5=4^{10}.8^{10}:8^5=4^{10}.8^5\)
\(9^{15}:27^{10}=9^{15}:9^{10}.3^{10}=9^5.3^{10}\)( tự tính)
3,
Ta có:
\(7^{200}=7^{2.100}=\left(7^2\right)^{100}=49^{100}\)
\(2^{700}=2^{7.100}=\left(2^7\right)^{100}=128^{100}\)
Vì \(128^{100}>49^{100}\)nên \(2^{700}>7^{200}\)
\(A=1+5+5^2+..+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{51}\right)-\left(1+5+5^2+...+5^{50}\right)\)
\(4A=\left(5-5\right)+\left(5^2-5^2\right)+...+\left(5^{50}+5^{50}\right)+5^{51}-1\)
\(4A=0+0+...+0+5^{51}-1\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
a: \(S=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)
b: \(S=\left(1+2\right)+2^2\left(1+2\right)+...+2^8\left(1+2\right)\)
\(=3\left(1+2^2+...+2^8\right)⋮3\)
P=2+22+23+245+26+27+28+29+210
P=2(1+2)+23(1+2)+25(1+2)+27(1+2)+29(1+2)
P=2.3+23.3+25.3+27.3+29.3=3.(2+23+25+27+29) Chia hết cho 3
=>P chia hết cho 3
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{11}\)
\(\Leftrightarrow2A-A=A\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4+...+2^{11}\right)-\left(1+2+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=2^{11}-1\)