K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

\(\left(3a+4\right)^2+\left(4a-1\right)^2+\left(2+5a\right)\left(2-5a\right)=9a^2+24a+16+16a^2-8a+1+4-25a^2=16a+21\)

a: \(Q=\left(\dfrac{a^2+4a+4-a^2+4a-4+4a^2}{\left(a-2\right)\left(a+2\right)}\right):\dfrac{a\left(a-3\right)}{5a\left(2-a\right)}\)

\(=\dfrac{4a^2+8a}{\left(a-2\right)\left(a+2\right)}\cdot\dfrac{-5\left(a-2\right)}{a-3}\)

\(=\dfrac{-20a}{a-3}\)

b: Q chia hết cho 20 thì a/a-3 là số nguyên

=>\(a-3\in\left\{1;-1;3;-3\right\}\)

=>a=4 hoặc a=6

 

16 tháng 5 2023

thank yeu

 

20 tháng 9 2020

A = ( 5a + 1/2 )2 - 2( 25a2 - 1/4 ) + ( 5a - 1/2 )2

= ( 5a + 1/2 )2 - 2[ ( 5a )2 - ( 1/2 )2 ] + ( 5a - 1/2 )2

= ( 5a + 1/2 )2 - 2( 5a - 1/2 )( 5a + 1/2 ) + ( 5a - 1/2 )2

= [ ( 5a + 1/2 ) - ( 5a - 1/2 ) ]

= ( 5a + 1/2 - 5a + 1/2 )2

= 12 = 1

23 tháng 8 2021

\(A=\left(5a-5\right)^2+10\left(a-3\right)\left(1+a\right).3a\)

\(A=25a^2-50a+25+30a\left(a-3+a^2-3a\right)\)

\(A=25a^2-50a+25+30a^2-90a+30a^3-90a^2\)

\(A=30a^3-35a^2-140a+25\)

Ta có: \(A=\left(5a-5\right)^2+10\left(a-3\right)\left(a+1\right)\cdot3a\)

\(=25a^2-50a+25+30a\left(a^2-2a-3\right)\)

\(=25a^2-50a+25+30a^3-60a^2-90a\)

\(=30a^3-35a^2-140a+25\)

19 tháng 7 2017

a) \(a^4-5a^2+4=\)\(\left(a^4-4a^2\right)-\left(a^2-4\right)=a^2\left(a^2-4\right)-\left(a^2-4\right)=\left(a^2-1\right)\left(a^2-4\right)\)

\(=\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)

\(a^4-a^2+4a-4=a^2\left(a^2-1\right)+4\left(a-1\right)=a^2\left(a-1\right)\left(a+1\right)+4\left(a-1\right)\)

\(=\left(a-1\right)\left[a^2\left(a+1\right)+4\right]=\left(a-1\right)\left(a^3+a^2+4\right)\)

\(a^3+a^2+4=\left(a^3+2a^2\right)-\left(a^2+2a\right)+\left(2a+4\right)=a^2\left(a+2\right)-a\left(a+2\right)+2\left(a+2\right)\)

\(=\left(a^2-a+2\right)\left(a+2\right)\)

\(N=\frac{\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)}{\left(a-1\right)\left(a+2\right)\left(a^2-a+2\right)}=\frac{\left(a+1\right)\left(a-2\right)}{a^2-a+2}\)

17 tháng 5 2020

em chịu

19 tháng 7 2017

c)\(P=\)\(\frac{\left(a-b\right)^2-c^2}{\left(a-b+c\right)^2}=\frac{\left(a-b+c\right)\left(a-b-c\right)}{\left(a-b+c\right)^2}=\frac{a-b-c}{a-b+c}\)

19 tháng 7 2017

b)\(M\)\(=\frac{\left(a+2\right)\left(a-1\right)^2}{\left(2a-3\right)\left(a-1\right)^2}=\frac{a+2}{2a-3}\)

7 tháng 7 2016

\(A=\frac{\left(a+2\right)^2\left(5a-15a^2\right)}{\left(a-3\right)\left(4a-a^3\right)}=\frac{\left(a+2\right)^2.5a.\left(1-3a\right)}{\left(a-3\right).a.\left(2-a\right)\left(a+2\right)}\)

\(=\frac{\left(a+2\right).5.\left(1-3a\right)}{\left(a-3\right).\left(2-a\right)}\)