Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2-1\ne0\\8x^3+1\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm\dfrac{1}{2}\)
\(P=\dfrac{2x^5-x^4-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{x^4-1}{2x+1}+\dfrac{2}{2x+1}=\dfrac{x^4+1}{2x+1}\)
\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)
\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)
\(\frac{4}{2x-3}-\frac{1}{2x+3}+\frac{2x+9}{9-4x^2}\)
\(\Leftrightarrow\frac{4}{2x-3}-\frac{1}{2x+3}+\frac{-2x-9}{4x^2-9}\)
\(\Leftrightarrow\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}+\frac{-2x-9}{\left(2x+3\right)\left(2x-3\right)}\)
\(\Leftrightarrow\frac{8x+12-2x+3+2x-2x-9}{\left(2x-3\right)\left(2x+3\right)}\)
\(\Leftrightarrow\frac{6x+6}{\left(2x-3\right)\left(2x+3\right)}\)
\(\Leftrightarrow\frac{2\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}\)
\(\Leftrightarrow\frac{2}{2x-3}\)
xem câu hỏi mình vừa làm Câu hỏi của dungdt0112 - Toán lớp 8 - Học toán với OnlineMath
Nguyễn Huệ Lam ơi cái câu b bn làm sai r cái đoạn đặt ntu chung là 2 x đầu tiên ấy bn
a)
\(\frac{9-\left(x+5\right)^2}{x^2+4x+4}=\frac{3^2-\left(x+5\right)^2}{x^2+2.x.2+2^2}=\frac{\left(3+x+5\right)\left(3-x-5\right)}{\left(x+2\right)^2}\)
\(=\frac{\left(x+8\right)\left(x-2\right)}{\left(x+2\right)^2}\)
b)
\(\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(x^2-8x+16\right)}{x^3+4^3}=\frac{2x\left(x^2-2.x.4+4^2\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)
\(=\frac{2x\left(x-4\right)^2}{\left(x+4\right)\left(x^2-4x+16\right)}\)
a. \(A=9x^2-30x+25-4x^2+12x-9+16-4x^2\)
\(=x^2-18x+32\)
b. \(B=25x^2-70x+49-\left(4x+3\right)\left(4x^2+12x+9\right)-3x^3+9x^2+5x-15\)
\(=25x^2-70x+49-\left(16x^3+48x^2+36x-12x^2-36x-27\right)-3x^3+9x^2+5x-15\)
\(=-19x^3+-2x^2-65x+61\)
Chúc em học tốt ^^
\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{ }\)
\(P=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(P=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2}{2x+1}\)
\(P=\frac{x^4-1}{2x+1}+\frac{2}{2x+1}\)
\(P=\frac{x^4+1}{2x+1}\)
Vậy \(P=\frac{x^4+1}{2x+1}\)
( 2x + 4 )( 8x - 3 ) - ( 4x + 1 )2
= 16x2 - 6x + 32x - 12 - ( 16x2 + 8x + 1 )
= 16x2 + 26x - 12 - 16x2 - 8x - 1
= 18x - 13
\(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)
\(=16x^2-6x+32x-12-\left(16x^2+8x+1\right)\)
\(=16x^2+26x-12-16x^2-8x-1\)
\(=18x-13\)