K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2022

\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=2^8\)

3 tháng 3 2022

A

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

Gọi đa thức là $T$

\(T=(\frac{-2007}{3})^8(xy)^8.(\frac{-6}{2007})^8(x^2y)^8\)

\(=\frac{2007^8}{3^8}.x^8y^8.\frac{6^8}{2007^8}.x^{16}.y^8\)

\(=\frac{6^8}{3^8}.x^{8+16}.y^{8+8}=2^8.x^{24}y^{16}\)

Ta có: \(\left(-\dfrac{2007}{3}xy\right)^8\cdot\left(-\dfrac{6}{2007}x^2y\right)^8\)

\(=\left(\dfrac{2007}{3}\cdot\dfrac{6}{2007}\right)^8\cdot x^8\cdot x^{16}\cdot y^8\cdot y^8\)

\(=256x^{24}y^{16}\)

\(P=\dfrac{4\cdot36^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{4\cdot\left(2^2\cdot3^2\right)^4-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

16 tháng 6 2016

\(2^4.4^8.8^{16}=2^4.2^{16}.2^{48}=2^{68}\)

16 tháng 6 2016

24.48.816=24.(22)8.(23)16=24.216.248=24+16+48=268

20 tháng 9 2018

ta có: \(E=\frac{50^{12}.16^{14}}{8^{25}.125^8}\)

\(E=\frac{\left(2.5^2\right)^{12}.\left(2^4\right)^{14}}{\left(2^3\right)^{25}.\left(5^3\right)^8}\)

\(E=\frac{2^{68}.5^{24}}{2^{75}.5^{24}}=\frac{1}{2^7}=\frac{1}{128}\)

20 tháng 9 2018

ta có: \(E=\frac{50^{12}.16^{14}}{8^{25}.125^8}\)

\(E=\frac{\left(2.5^2\right)^{12}.\left(2^4\right)^{14}}{\left(2^3\right)^{25}.\left(5^3\right)^8}\)

\(E=\frac{2^{68}.5^{24}}{2^{75}.5^{24}}=\frac{1}{2^7}=\frac{1}{128}\)

\(\frac{4^{10}+8^4}{4^5+8^8}=\frac{4^5.4^5+8^4}{4^5+8^4.8^4}=\frac{4^5}{8^4}=\frac{\left(2^2\right)^5}{\left(2^3\right)^4}=\frac{2^{10}}{2^{12}}=\frac{2^{10}}{2^{10}.2^2}=\frac{1}{4}\)