![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/2.A=1/22+1/23+...+1/2101
=>1/2A-A=1/2101-1/2
=>-1/2A=1/2101-1/2
A=(1/2101-1/2):(-1/2)=(1/2101-1/2).(-2)
=1-1/2100
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 1 - (2+22+23+...+2100)
Đặt B = 2+22+23+...+2100 => A = 1 - B
2B = 2(2+22+23+...+2100) = 22+23+...+2100+2101
=> B = 2B - B = (22+23+...+2100+2101) - (2+22+23+...+2100) = 2101 - 2
=> A = 1 - (2101 - 2) = 3 - 2101
Ta có: \(2A=2-2^2-2^3-...-2^{101}\)
Suy ra \(2A-A=2-2^{101}-1+2\Leftrightarrow A=3-2^{101}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời
A = 1 + 21 + 22 + ... + 299 + 2100
2A = 2 + 22 + 23 + ... + 2100 + 2101
2A - A = A = ( 2 + 22 + 23 + ... + 2100 + 2101 ) - ( 1 + 21 + 22 + ... + 299 + 2100 )
A = 2101 - 1
\(A=1+2^1+2^2+...+2^{99}+2^{100}\)
\(2A=2+2^2+...+2^{100}+2^{101}\)
Ta có:\(2A-A=\left(2^1+2^2+...+2^{100}\right)-\left(1+2^1+2^2+...+2^{101}\right)\)
\(A=2^{101}-1\)
#hok tốt#
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A = 2 + 22 + 23 + 24 + ... + 299
2A = 22 + 23 + 24 + 25 + ... + 2100
2A - A = (22 + 23 + 24 + 25 + ... + 2100) - (2 + 22 + 23 + 24 + ... + 299)
A = 2100 - 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S=2^2+2^3+....+2^{101}\)
\(\Rightarrow S=2^{101}-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ta gọi biểu thức trên là A.
ta có: A=1+2+22+...+2100
2A= 2x(1+2+22+...+2100)
2A= 2x1+2x2+22x2+...+2100x2
2A= 2+22+23+....+2101
2A-A=A=(2+22+23+....+2101)-(1+2+22+...+2100)
A= 2101-1
b/ làm tương tụ như câu a nhưng cuối cùng phải thêm '':2'' (vì lúc đó ta tính ra 3A - A =2A nên phải chia 2)
Đặt A = 1+2+22+...+2100
2A = 2+22+23+...+2101
2A - A = 2101 - 1
=> A = 2101 - 1