K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 6 2021
`A=sqrt{1+1/a^2+1/(a+1)^2}`
`=sqrt{1/a^2+2/a+1-2/a+1/(a+1)^2}`
`=sqrt{(1/a+1)^2-2/a+1/(a+1)^2}`
`=sqrt{(a+1)^2/a^2-2.(a+1)/a.(1/(a+1))+1/(a+1)^2}`
`=sqrt{((a+1)/a-1/(a+1))^2}`
`=|(a+1)/a-1/(a+1)|`
`=|1+1/a-1/(a+1)|`
`a>0=>1/a>1/(a+1)=>1+1/a-1/(a+1)>0`
`=>A=1+1/a-1/(a+1)`
5 tháng 6 2021
Áp dụng công thức ở A ta tính được
`B=1+1/1-1/2+1+1/2-1/3+1-1/3+1/4+.......+1+1/(n-1)-1/n`(ở sau bạn không ghi rõ nên mình đặt số cuối là n)
`=underbrace{1+1+....+1}_{\text{n chữ số 1}}-1/n`
`=n-1/n`
22 tháng 9 2018
\(3333333\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}3\)
HV
Rút gọn biểu thức
A=Căn ((2 căn 10 + căn 30 - 2 căn 2 - căn 6)/(2 căn 10 - 2 căn 2)) ÷ 2/ ( căn 3 -1)
0
ML
0
LD
0
Công thức tổng quát:
\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\left(\sqrt{n}-\sqrt{n+1}\right)=\sqrt{n+1}-\sqrt{n}\)
Vậy \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=-1+\sqrt{100}=-1+10=9\)