K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

\(\sqrt{\left(1-\sqrt{2020}\right)^2\cdot\left(\sqrt{2021-2\sqrt{2020}}\right)}\)

\(=\sqrt{\left(1-\sqrt{2020}\right)^2\cdot\sqrt{\left(1-\sqrt{2020}\right)^2}}\)

\(=\sqrt{\left(1-\sqrt{2020}\right)^2\cdot\left(1-\sqrt{2020}\right)}\)

\(=\sqrt{\left(1-\sqrt{2020}\right)^3}=\left(1-\sqrt{2020}\right)\sqrt{1-\sqrt{2020}}\)

10 tháng 8 2021

cảm ơn nha

9 tháng 10 2020

Đặt \(2020-x=u;x-2021=v\)thì \(u+v=-1\)

Phương trình trở thành \(\frac{u^2+uv+v^2}{u^2-uv+v^2}=\frac{19}{49}\Leftrightarrow30u^2+30v^2+68uv=0\)

\(\Leftrightarrow15\left(u+v\right)^2+4uv=0\Leftrightarrow4uv=-15\Leftrightarrow uv=\frac{-15}{4}\)

hay \(\left(2020-x\right)\left(x-2021\right)=-\frac{15}{4}\Leftrightarrow x^2-4041x+4082416,25=0\)

Dùng công thức nghiệm tìm được x = 2022, 5 hoặc x = 2018, 5

12 tháng 7 2019

Ta có: \(2021^2=\left(2020+1\right)^2=2020^2+2.2020.1+1^2\)

\(\Rightarrow1+2020^2=2021^2-2.2020\)

\(\Rightarrow\sqrt{1+2020^2+\frac{2020^2}{2021}}+\frac{2020}{2021}\)

\(=\sqrt{2021^2-2.2020+\frac{2020^2}{2021}}+\frac{2020}{2021}\)

\(=\sqrt{2021^2-2.2021.\frac{2020}{2021}+\left(\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

\(=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

\(=2021-\frac{2020}{2021}+\frac{2020}{2021}=2021\)

19 tháng 8 2020

a)

\(P=a\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}+\frac{a}{b}=a\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}\)

      =\(a\sqrt{\frac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}=a\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{\left[a\left(a+1\right)\right]^2}}+\frac{a}{a+1}\)

      \(=a.\frac{a\left(a+1\right)+1}{a\left(a+1\right)}+\frac{a}{a+1}=a+\frac{1}{a+1}+\frac{a}{a+1}=a+1\)

Vay P=a+1

phan b,c ap dung phan a la ra

8 tháng 10 2020

CM bài toán phụ: \(x+y+z=0\) 

CM: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) với x,y,z dương

Ta có: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)

\(=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng vào ta được: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)

\(Q=2021-\frac{1}{2021}=...\)

c) Áp dụng công thức \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\),ta được:

\(Q=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)

\(=1+1+1+...+1-\frac{1}{2021}\)

\(=2021-\frac{1}{2021}=\frac{4084440}{2021}\)

21 tháng 10 2020

Đk: \(\forall x\in R\)

Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)

<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=2021\)

Lập bảng xét dầu

x                   -2                   1 

x - 1   -         |           -          0       +

x + 2   -        0         +          |            -

Xét các TH xảy ra :

TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021

<=> -2x = 2022 <=> x = -1011 (tm)

TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021

<=> 0x = 2018 (vô lí) => pt vô nghiệm

TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021

<=> 2x = 2020 <=> x = 1010 (tm)

Vậy S = {-1011; 1010}

NV
19 tháng 8 2020

Áp dụng bài vừa chứng minh bên dưới :D

\(\Rightarrow P=2021\)