K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

\(\frac{3x}{2x+4}=\frac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}=\frac{3x^2-6x}{2\left(x+2\right)\left(x-2\right)}=\)

\(\frac{x+3}{x^2-4}=\frac{2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}=\frac{2x+6}{2\left(x+2\right)\left(x-2\right)}\)

8 tháng 9 2021

`(3x)/(2x+4)`

`= (3x (x-2) )/( (2x+4) (x-2) )`

`= (3x^2 - 6x)/(2 (x+2) (x-2) )`

`(x+3)/(x^2 - 4)`

`= (x+3)/(x^2 - 2^2)`

`= (x+3)/( (x-2) (x+2) )`

`= (2 (x+3) )/(2 (x-2) (x+2) )`

`= (2x+ 6)/(2 (x+2) (x-2) )`

a: 3x-5>15-x

=>4x>20

hay x>5

b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)

=>3x2+x>3x2-12

=>x>-12

c: =>2x+4>=2x+2-3

=>4>=-1(luôn đúng)

a: 5x+10>3x+3

=>2x>-7

=>x>-7/2

12 tháng 4 2023

bạn coi lại đề nhé!

19 tháng 9 2023

loading...

loading...

20 tháng 9 2023

chữ đẹp v :) 

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe...
Đọc tiếp

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB

1

1:

a: =>3x=6

=>x=2

b: =>4x=16

=>x=4

c: =>4x-6=9-x

=>5x=15

=>x=3

d: =>7x-12=x+6

=>6x=18

=>x=3

2:

a: =>2x<=-8

=>x<=-4

b: =>x+5<0

=>x<-5

c: =>2x>8

=>x>4

a: =>2x<=-8

=>x<=-4

b: =>x+5<0

=>x<-5

c: =>2x>8

=>x>4

d: =>3x>=9

=>x>=3

16 tháng 5 2021

\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)

\(< =>3\left(x-5\right)\left(x+2\right)=1\)

\(< =>3\left(x^2-3x-10\right)=1\)

\(< =>x^2-3x-10=\frac{1}{3}\)

\(< =>x^2-3x-\frac{31}{3}=0\)

giải pt bậc 2 dễ r

16 tháng 5 2021

\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)

\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)

\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)

\(< =>x\left(210-12\right)=0< =>x=0\)

1 tháng 8 2023

\(P\left(x\right)=-2x^4-7x+\dfrac{1}{2}-6x^4+2x^2-x\)

\(P\left(x\right)=\left(-2x^4-6x^4\right)-\left(7x+x\right)+2x^2+\dfrac{1}{2}\)

\(P\left(x\right)=-8x^4-8x+2x^2+\dfrac{1}{2}\)

______

\(Q\left(x\right)=3x^3-x^4-5x^2+x^3-6x+\dfrac{3}{4}\)

\(Q\left(x\right)=\left(3x^3+x^3\right)-x^4-5x^2-6x+\dfrac{3}{4}\)

\(Q\left(x\right)=4x^3-x^4-5x^2-6x+\dfrac{3}{4}\)

1 tháng 8 2023

giúp tuôi nốt phần b với mng ưii

 

b: 

ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)

\(\left(\dfrac{4}{x^3-4x}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x^2+2x}-\dfrac{x}{2x+4}\right)\)

\(=\left(\dfrac{4}{x\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x\left(x+2\right)}-\dfrac{x}{2\left(x+2\right)}\right)\)

\(=\dfrac{4+x\left(x-2\right)}{x\left(x-2\right)\cdot\left(x+2\right)}:\dfrac{2\left(x-2\right)-x^2}{x\left(x+2\right)\cdot2}\)

\(=\dfrac{x^2-2x+4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2x\left(x+2\right)}{-\left(x^2-2x+4\right)}\)

\(=\dfrac{-2}{x-2}\)

c:ĐKXĐ: x<>0

\(\left(x-\dfrac{3}{x}\right):\left(\dfrac{x^2+2x+1}{x}-\dfrac{2x+4}{x}\right)\)

\(=\dfrac{x^2-3}{x}:\dfrac{x^2+2x+1-2x-4}{x}\)

\(=\dfrac{x^2-3}{x}\cdot\dfrac{x}{x^2-3}\)

=1