K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Ta có: \(\frac{5}{{2 - x}} = \frac{{ - 5}}{{x - 2}}\)

\({x^2} - 4{\rm{x}} + 4 = {\left( {x - 2} \right)^2}\)

\(MTC = \left( {x + 2} \right){\left( {x - 2} \right)^2}\)

Nhân tử phụ của x+2 là \({\left( {x - 2} \right)^2}\)

Nhân tử phụ của\({x^2} - 4{\rm{x}} + 4\)  là \({\left( {x - 2} \right)^2}\)

Nhân tử phụ của x - 2 là (x+2)(x−2)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:

\(\begin{array}{l}\frac{1}{{x + 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{{x + 1}}{{{x^2} - 4{\rm{x  -  4}}}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{5}{{2 - x}} = \frac{{ - 5\left( {x + 2} \right)\left( {x - 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\end{array}\)

b) Ta có: 3x+3y=3(x+y)

            \({x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right)\)

            \({x^2} + 2{\rm{x}}y + {y^2} = {\left( {x - y} \right)^2}\)

\(MTC = 3\left( {x + y} \right){\left( {x - y} \right)^2}\)

Nhân tử phụ của 3x+3y là: \({\left( {x - y} \right)^2}\)

Nhân tử phụ của \({x^2} - {y^2}\) là: 3(x−y)

Nhân tử phụ của \({x^2} + 2{\rm{x}}y + {y^2}\) là: 3(x+y)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có: 

\(\begin{array}{l}\frac{1}{{3{\rm{x}} + 3y}} = \frac{{{{\left( {x - y} \right)}^2}}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{2{\rm{x}}}}{{{x^2} - {y^2}}} = \frac{{6{\rm{x}}\left( {x - y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}} = \frac{{3\left( {{x^2} - xy + {y^2}} \right)\left( {x + y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\end{array}\)

21 tháng 4 2017

Giải bài 19 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

15 tháng 11 2017

Bài giải

a) \(\dfrac{1}{x+2}=\dfrac{x.\left(x-2\right)}{\left(x+2\right)\left(x-2\right).x}=\dfrac{x^2-2x}{x\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{8}{2x-x^2}=\dfrac{8}{x\left(2-x\right)}=-\dfrac{8}{x\left(x-2\right)}=-\dfrac{8.\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

b) \(x^2+1=\dfrac{x^2+1}{1}=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x^2-1}=\dfrac{x^4-1}{x^2-1}\)

\(\dfrac{x^4}{x^2-1}\) giữ nguyên.

c) \(\dfrac{x^3}{x^3-3x^2y+3xy^2-y^3}=\dfrac{x^3}{\left(x-y\right)^3}=\dfrac{x^3.y}{\left(x-y\right)^3.y}=\dfrac{x^3y}{y\left(x-y\right)^3}\)

\(\dfrac{x}{y^2-xy}=\dfrac{x}{y.\left(y-x\right)}=-\dfrac{x}{y.\left(x-y\right)}=-\dfrac{x\left(x-y\right)^2}{y.\left(x-y\right).\left(x-y\right)^2}=\dfrac{x\left(x-y\right)^2}{y.\left(x-y\right)^3}\)

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

29 tháng 11 2019

Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)

\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)

29 tháng 11 2019

Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\)\(a)\frac{1}{{4{\rm{x}}{y^2}}}\)và \(\frac{5}{{6{{\rm{x}}^2}y}}\)

Ta có: MTC là : \(12{{\rm{x}}^2}{y^2}\).

Nhân tử phụ của phân thức \(\frac{1}{{4{\rm{x}}{y^2}}}\)là 3x

Nhân tử phụ của phân thức \(\frac{5}{{6{{\rm{x}}^2}y}}\)là 2y

Khi đó: \(\frac{1}{{4{\rm{x}}{y^2}}} = \frac{{1.3{\rm{x}}}}{{4{\rm{x}}{y^2}.3{\rm{x}}}} = \frac{{3{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}}\)

\(\frac{5}{{6{{\rm{x}}^2}y}} = \frac{{5.2y}}{{6{{\rm{x}}^2}y.2y}} = \frac{{10y}}{{12{{\rm{x}}^2}{y^2}}}\)

 \(b)\frac{9}{{4{{\rm{x}}^2} - 36}}\)và \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\).

Ta có: \(\begin{array}{l}4{{\rm{x}}^2} - 36 = 4({x^2} - 9) = 4(x - 3)(x + 3)\\{x^2} + 6{\rm{x}} + 9 = {(x + 3)^2}\end{array}\)

MTC là: \(4(x - 3){(x + 3)^2}\)

Nhân tử phụ của phân thức \(\frac{9}{{4{{\rm{x}}^2} - 36}}\)là: x + 3

Nhân tử phụ của phân thức \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\)là 4(x – 3)

Khi đó: \(\begin{array}{l}\frac{9}{{4{{\rm{x}}^2} - 36}} = \frac{9}{{4({x^2} - 9)}} = \frac{9}{{4(x - 3)(x + 3)}} = \frac{{9(x + 3)}}{{4(x - 3){{(x + 3)}^2}}}\\\frac{1}{{{x^2} + 6{\rm{x}} + 9}} = \frac{1}{{{{(x + 3)}^2}}} = \frac{{4(x - 3)}}{{4(x - 3){{(x + 3)}^2}}}\end{array}\)

20 tháng 11 2022

a: \(\dfrac{1}{x+2}=\dfrac{2x-x^2}{x\left(2-x\right)\left(2+x\right)}\)

\(\dfrac{8}{2x-x^2}=\dfrac{8}{x\left(2-x\right)}=\dfrac{8x+16}{x\left(2-x\right)\left(2+x\right)}\)

b: \(x^2+1=\dfrac{x^4-1}{x^2-1}\)

\(\dfrac{x^4}{x^2-1}=\dfrac{x^4}{x^2-1}\)

c: \(\dfrac{x^3}{x^3-3x^2y+3xy^2-y^3}=\dfrac{x^3}{\left(x-y\right)^3}=\dfrac{x^3y}{y\cdot\left(x-y\right)^3}\)

\(\dfrac{x}{y^2-xy}=\dfrac{x}{y\left(y-x\right)}=\dfrac{-x}{y\left(x-y\right)}=\dfrac{-x\left(x-y\right)^2}{y\left(x-y\right)^3}\)