Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)
c)
\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)
d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)
f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)
g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)
\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)
\(1.\text{ }\text{ }\text{ }\dfrac{\left(x^2+2\right)^2-4x^2}{y\left(x^2+2\right)-2xy-\left(x-1\right)^2-1}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x^2y+2y-2xy-x^2+2x-1-1}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{\left(x^2y-x^2\right)-\left(2xy-2x\right)+\left(2y-2\right)}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x^2\left(y-1\right)-2x\left(y-1\right)+2\left(y-1\right)}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{\left(x^2-2x+2\right)\left(y-1\right)}\\ =\dfrac{x^2+2x+2}{y-1}\)
\(2.\text{ }\text{ }\text{ }\text{ }\dfrac{x^2+5x+6}{x^2+3x+2}\\ =\dfrac{x^2+3x+2x+6}{x^2+2x+x+2}\\ =\dfrac{\left(x^2+3x\right)+\left(2x+6\right)}{\left(x^2+2x\right)+\left(x+2\right)}\\ =\dfrac{x\left(x+3\right)+2\left(x+3\right)}{x\left(x+2\right)+\left(x+2\right)}\\ =\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+1\right)}\\ =\dfrac{x+3}{x+1}\)
\(3.\text{ }\text{ }\text{ }\dfrac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2yt+2xz-t^2}\text{ ( Chữa đề ) }\\ =\dfrac{\left(x^2+2xy+y^2\right)-\left(z^2+2zt+t^2\right)}{\left(x^2+2xz+z^2\right)-\left(y^2+2yt+t^2\right)}\\ =\dfrac{\left(x+y\right)^2-\left(z+t\right)^2}{\left(x+z\right)^2-\left(y+t\right)^2}\\ =\dfrac{\left(x+y+z+t\right)\left(x+y-z-t\right)}{\left(x+z+y+t\right)\left(x+z-y-t\right)}\\ =\dfrac{x+y-z-t}{x+z-y-t}\)
\(4.\text{ }\text{ }\text{ }\dfrac{\left(n+1\right)!}{\left(n+1\right)!+\left(n+2\right)!}=\dfrac{\left(n+1\right)!}{\left(n+1\right)!\left(1+n+2\right)}=\dfrac{1}{n+3}\)
\(5.\text{ }\text{ }\text{ }\dfrac{x^2+5x+4}{x^2-1}\\ =\dfrac{x^2+x+4x+4}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{\left(x^2+x\right)+\left(4x+4\right)}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{x\left(x+1\right)+4\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{x+4}{x-1}\)
\(6.\text{ }\text{ }\text{ }\dfrac{x^2-3x}{2x^2-7x+3}\\ =\dfrac{x\left(x-3\right)}{2x^2-6x-x+3}\\ =\dfrac{x\left(x-3\right)}{\left(2x^2-6x\right)-\left(x-3\right)}\\ =\dfrac{x\left(x-3\right)}{2x\left(x-3\right)-\left(x-3\right)}\\ =\dfrac{x\left(x-3\right)}{\left(2x-1\right)\left(x-3\right)}\\ =\dfrac{x}{2x-1}\)
Câu 1:
\(\text{a) }\dfrac{x^2-xy}{3xy-3y^2}=\dfrac{x\left(x-y\right)}{3y\left(x-y\right)}=\dfrac{x}{3y}\)
\(\text{b) }\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\\ =\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\\ =\dfrac{2a\left(x-1\right)^2}{5b\left(1-x\right)\left(1+x\right)}\\ =-\dfrac{2a\left(x-1\right)^2}{5b\left(x-1\right)\left(1+x\right)}\\ =-\dfrac{2a\left(x-1\right)}{5b\left(x+1\right)}\\ =-\dfrac{2ax-2a}{5bx+5b}\)
\(\text{c) }\dfrac{4x^2-4xy}{5x^3-5x^2y}=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)
\(\text{d) }\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)
\(\text{e) }\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\\ =\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\\ =\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x+y\right)^3}\\ =\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\\ =\dfrac{x^3+y^3}{x^4-xy^3}\)
Câu 3:
\(\text{ a) }\dfrac{\left(a+b\right)^2-c^2}{a+b+c}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)
\(\text{b) }\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\\ =\dfrac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}\\ =\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\\ =\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}\\ =\dfrac{a+b-c}{a-b+c}\)
\(\text{c) }\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\\ =\dfrac{2x^3-x^2-6x^2+3x-15x+45}{3x^3-10x^2-9x^2+3x+30x-9}\\ =\dfrac{\left(2x^3-x^2-15x\right)-\left(6x^2-3x-45\right)}{\left(3x^3-10x^2+3x\right)-\left(9x^2-30x+9\right)}\\ =\dfrac{x\left(2x^2-x-15\right)-3\left(2x^2-x-15\right)}{x\left(3x^2-10x+3\right)-3\left(3x^2-10x+3\right)}\\ =\dfrac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\\ =\dfrac{\left(x-3\right)\left(2x^2-6x+5x-15\right)}{\left(x-3\right)\left(3x^2-9x-x+3\right)}\\ =\dfrac{\left(x-3\right)\left[\left(2x^2-6x\right)+\left(5x-15\right)\right]}{\left(x-3\right)\left[\left(3x^2-9x\right)-\left(x-3\right)\right]}\\ =\dfrac{\left(x-3\right)\left[x\left(x-3\right)+5\left(x-3\right)\right]}{\left(x-3\right)\left[3x\left(x-3\right)-\left(x-3\right)\right]}\\ =\dfrac{\left(x-3\right)\left(x-3\right)\left(x+5\right)}{\left(x-3\right)\left(x-3\right)\left(3x-1\right)}\\ =\dfrac{x+5}{3x-1}\)
1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)
\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)
2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)
3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(=\dfrac{x+y+z}{2}\)
Bài 1 . Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 3x - 10) ta được x+ 2
Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 7x + 10) ta được x - 2
Do đó , ta có :
\(\dfrac{1}{x^2+3x-10}=\dfrac{x+2}{\left(x^2+3x-10\right)\left(x+2\right)}=\dfrac{x+2}{x^3+5x^2-4x-20}\)
Và : \(\dfrac{x}{x^2+7x+10}=\dfrac{x\left(x-2\right)}{\left(x^2+7x+10\right)\left(x-2\right)}=\dfrac{x^2-2x}{x^3+5x^2-4x-20}\)
Bài 2 . a) Ta có :
\(\dfrac{x-1}{x^3+1}\)( giữ nguyên)
\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2+2x}{x^3+1}\)
\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2-2x+2}{x^3+1}\)
b) Ta có MTC = x2( y - z)2
Ta có :
\(\dfrac{x+y}{x\left(y-z\right)^2}=\dfrac{x^2+xy}{x^2\left(y-z\right)^2}\)
\(\dfrac{y}{x^2\left(y-z\right)^2}\)( giữ nguyên )
\(\dfrac{z}{x^2}=\dfrac{z\left(y-z\right)^2}{x^2\left(y-z\right)^2}\)
Bài 1:
a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)
\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)
Để A=0 thì x+1=0
hay x=-1
b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)
Để B=0 thi (x-2)(x+2)=0
=>x=2 hoặc x=-2
1, \(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)
\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)
\(=\dfrac{2a\left(x-1\right)^2}{5b\left(1-x\right)\left(1+x\right)}\)
\(=\dfrac{2a\left(x-1\right)}{5b\left(x+1\right)}\)
2, \(\dfrac{x^2+4x+3}{2x+6}\)
\(=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}\)
\(=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+3\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)
3, \(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)
\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)
4, \(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)
5, \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)
a)
Đặt
\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)
Khi đó:
\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)
\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)
\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)
\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)
Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)
Ta có:
Áp dụng tính chất dãy tỉ số bằng nhau thì:
\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)
Khi đó:
\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)
Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)
Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix}
1\\
-5\end{matrix}\right.\)
\(a,\dfrac{1}{x^2-x}+\dfrac{2x}{4x^3}-\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{2x^2}-\dfrac{1}{x^2+x+1}\)
\(=\dfrac{2x\left(x^2+x+1\right)+\left(x-1\right).\left(x^2+x+1\right)-2x^2.\left(x-1\right)}{2x^2.\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\dfrac{2x^3+2x^2+2x+x^3-1-2x^3+2x^2}{2x^2.\left(x^3-1\right)}\)
\(=\dfrac{4x^2+2x+x^3-1}{2x^5-2x^2}\)
\(=\dfrac{x^3+4x^2+2x-1}{2x^5-2x^2}\)
\(b,\dfrac{1}{x^2-x+1}+1-\dfrac{x^2+2}{\left(x+1\right).\left(x^2-x+1\right)}\)
\(=\dfrac{1}{x^2-x+1}+1-\dfrac{x^2+2}{\left(x^2-x+1\right)}\)
\(=\dfrac{x+1\left(x+1\right).\left(x^2-x+1\right)-\left(x^2+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x+1+x^3+1-x^2-2}{\left(x+1\right).\left(x^2-x+1\right)}\)
\(=\dfrac{x+0+x^3-x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x\left(1+x^2-x\right)}{\left(x+1\right).\left(x^2-x+1\right)}\)
\(=\dfrac{x}{x+1}\)