K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

a) Tìm MTC: x3 – 1 = (x – 1)(x2 + x + 1)

Nên MTC = (x – 1)(x2 + x + 1)

Nhân tử phụ:

(x3 – 1) : (x3 – 1) = 1

(x – 1)(x2 + x + 1) : (x2 + x + 1) = x – 1

(x – 1)(x2+ x + 1) : 1 = (x – 1)(x2 + x + 1)

Qui đồng:

Giải bài 16 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

b) Tìm MTC: x + 2

2x – 4 = 2(x – 2)

6 – 3x = 3(2 – x)

MTC = 6(x – 2)(x + 2)

Nhân tử phụ:

6(x – 2)(x + 2) : (x + 2) = 6(x – 2)

6(x – 2)(x + 2) : 2(x – 2) = 3(x + 2)

6(x – 2)(x + 2) : -3(x – 2) = -2(x + 2)

Qui đồng:

Giải bài 16 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

click mh nha
17 tháng 11 2017

Bạn giỏi quá !!!

18 tháng 11 2018

Tìm MTC: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

Nên \(MTC=\left(x-1\right)\left(x^2+x+1\right)\)

Nhân tử phụ: 

\(\left(x^3-1\right)\div\left(x^3-1\right)=1\)

\(\left(x-1\right)\left(x^2+x+1\right)\div\left(x^2+x+1\right)=x-1\)

\(\left(x-1\right)\left(x^2+x+1\right)\div1=\left(x-1\right)\left(x^2+x+1\right)\)

Quy đồng:

\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{1-2x}{x^2+x+1}=\frac{\left(x-1\right)\left(1-2x\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(-2=\frac{-2\left(x^3-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

23 tháng 11 2020

MTC : ( x - 1 )( x2 + x + 1 )

Ta có : \(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)

25 tháng 11 2020

Hnay mới học thì hnay trả lời nhá :P

\(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1}\)

Ta có : \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2+x+1=x^2+x+1\)

MTC : \(\left(x-1\right)\left(x^2+x+1\right)\)

\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)