K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Ta có: OA = OB (= bán kính đường tròn (O))

O’A = O’B (= bán kính đường tròn (O’))

⇒ OO’ là đường trung trực của AB

27 tháng 1 2019

a) Ta có: OA = OB (= bán kính đường tròn (O))

O’A = O’B (= bán kính đường tròn (O’))

⇒ OO’ là đường trung trực của AB

b) Hình 86a) Hai đường tròn tiếp xúc ngoài thì A nằm giữa O và O’

Hình 86b) Hai đường tròn tiếp xúc trong thì A nằm ngoài đoạn OO’

29 tháng 10 2017

Gọi M là trung điểm BC => BM=CM 
Xét tam giác ABC có: 
BM=CM 
AE=EC (giả thiết vì E la trung điểm của AC) 
Nên: EM là đường trung bình trong tam giác ABC 
=>EM//AB và EM=AB/2 
Tương tự: Xét tam giác BCD có: 
FM là đường trung bình trong tam giác BCD 
=>FM//CD và FM=CD/2 
Lại có: 
FM//CD 
mà AB//CD (theo giả thiết ABCD la hthang) 
Nên: FM//AB 
Mà EM//AB 
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng. 
Vậy,EF=FM-EM=(CD-AB)/2  

a)Nối F với D : E với D ta có:

Xét tam giác FBC ta có 

D là trung điểm BC(1)

Góc BFC=90 (2)

Từ (1)(2)=>FD là trung tuyến của tam giác FBC

=>BD=CD=DF(*)

Chứng minh tương tự tam giác EBC

=>DE=DC=DB(**)

Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)

=>B;F;E;C thuộc đừng tròn

=>D là tâm của đường tròn

B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn 

=>B;H;E;c ko thuộc đừng tròn

Bổ sung đề: Từ B kẻ dây BD vuông góc với OA tại H

a: Xét ΔABO vuông tại B có \(cosBOA=\dfrac{OB}{OA}\)

=>\(\dfrac{3}{OA}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(OA=3\cdot\dfrac{2}{\sqrt{3}}=2\sqrt{3}\left(cm\right)\)

b:ΔOBD cân tại O

mà OH là đường cao

nên OH là phân giác của \(\widehat{BOD}\)

Xét ΔBOA và ΔDOA có

OB=OD

\(\widehat{BOA}=\widehat{DOA}\)

OA chung

Do đó: ΔBOA=ΔDOA

=>\(\widehat{OBA}=\widehat{ODA}=90^0\)

=>AD là tiếp tuyến của (O)

c: ΔABO=ΔADO

=>AB=AD
=>A nằm trên đường trung trực của BD(1)

OB=OD

=>O nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AO là đường trung trực của BD

 

22 tháng 10 2016

a/ Tam giác BMD vuông tại B có BI là trung tuyến nên IB=MD/2=ID lại có CB = CD
=> IC là đường trung trực của đoạn thẳng BD
=> IC qua trung điểm O của BD hay I,O,C thẳng hàng.
Mặt khác: A,O,C thẳng hàng (O là trung điểm AC)
Vậy A,O,I,C thẳng hàng.
b/ Ta có: AFD = CID (cùng bù với góc AID)
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc CID = CED (2 đỉnh kề cùng nhìn cạnh CD dưới góc bằng nhau).
Do đó: góc AFD = CED.
c/ Tự chứng minh tam giác AFD = tam giác CED => DF = DE
EF là trung trực của đoạn thẳng MD => DF = FM và DE = EM
Từ đó suy ra DF=FM=EM=DE => DEMF là hình thoi (1)
=> DI là phân giác của góc EDF.
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc IDE = góc ICE = 45 độ => Góc EDF = 2.IDE = 90 độ (2)
Từ (1) và (2) => DEMF là hình vuông.

21 tháng 10 2016

bvczakk