Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\frac{{AB''}}{{AB}} = \frac{{AC''}}{{AC}} = \frac{{AD''}}{{AD}}\) nên hình chữ nhật AB”C”D” đồng dạng phối cảnh với hình chữ nhật ABCD.
b) Ta có: \(\frac{{A'B'}}{{B'C'}} = \frac{{AB}}{{BC}} \Rightarrow \frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}}\)
Mà \(\frac{{AB''}}{{AB}} = \frac{{B'C'}}{{BC}} \Rightarrow A'B' = AB''\)
Ta có hình chữ nhật AB”C”D” đồng dạng phối cảnh với hình chữ nhật ABCD
\( \Rightarrow \frac{{B''C''}}{{BC}} = \frac{{AB''}}{{AB}}\)
Mà \(\frac{{AB''}}{{AB}} = \frac{{B'C'}}{{BC}} \Rightarrow \frac{{B''C''}}{{BC}} = \frac{{B'C'}}{{BC}} \Rightarrow B''C'' = B'C'\)
c) Ta có: \(\frac{{A'B'}}{{B'C'}} = \frac{{AB}}{{BC}} \Rightarrow \frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}}\)
Vậy hình chữ nhật ABCD đồng dạng với hình chữ nhật A’B’C’D’.
- Vì \(OA' = 2OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{2}\);\(OB' = 2OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{2}\).
Xét tam giác \(OA'B'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{2}\)
Do đó, \(A'B'//AB\) (định lí Thales đảo)
Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{2}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'B'}}{{AB}} = \frac{2}{1} = 2\).
- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OD' = 2OD \Rightarrow \frac{{OD}}{{OD'}} = \frac{1}{2}\).
Xét tam giác \(OA'D'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OD}}{{OD'}} = \frac{1}{2}\)
Do đó, \(A'D'//AD\) (định lí Thales đảo)
Vì \(A'D'//AD \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OD}}{{OD'}} = \frac{{AD}}{{A'D'}} = \frac{1}{2}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'D'}}{{AD}} = \frac{2}{1} = 2\).
- Vì \(OB' = 2OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{2}\);\(OC' = 2OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{2}\).
Xét tam giác \(OB'C'\) có:
\(\frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{1}{2}\)
Do đó, \(B'C'//BC\) (định lí Thales đảo)
Vì \(B'C'//BC \Rightarrow \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{BC}}{{B'C'}} = \frac{1}{2}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{B'C'}}{{BC}} = \frac{2}{1} = 2\).
- Vì \(OD' = 2OD \Rightarrow \frac{{OD}}{{OD'}} = \frac{1}{2}\);\(OC' = 2OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{2}\).
Xét tam giác \(OD'C'\) có:
\(\frac{{OD}}{{OD'}} = \frac{{OC}}{{OC'}} = \frac{1}{2}\)
Do đó, \(D'C'//DC\) (định lí Thales đảo)
Vì \(D'C'//DC \Rightarrow \frac{{OD}}{{OD'}} = \frac{{OC}}{{OC'}} = \frac{{DC}}{{D'C'}} = \frac{1}{2}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{D'C'}}{{DC}} = \frac{2}{1} = 2\).
Do đó, \(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{C'D'}}{{CD}} = \frac{{A'D'}}{{AD}}\).
- Có ΔA′B′C′ ∽ ΔABC
=> \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 2\)
=> Đáp án đúng là đáp án C
a) Ta có:
\(\begin{array}{l}\frac{{A'B'}}{{AB}} = \frac{2}{{2,4}} = \frac{5}{6}\\\frac{{A'C'}}{{AC}} = \frac{5}{6}\end{array}\)
Vậy \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\)
b) Ta có: \(\widehat A = \widehat {A'} = 135^\circ \)
a) Xét tam giác ABM có A'B' là đường trung bình của tam giác
\( \Rightarrow A'B' // AB\)
\( \Rightarrow \widehat {C'B'A'} = \widehat {CBA}\) (hai góc đồng vị)
Tương tự, tam giác AMC có A'C' là đường trung bình nên \( = \widehat {ACB}\) (hai góc đồng vị)
Xét tam giác ABC có:
\( \widehat {BAC} + \widehat {CBA} + \widehat {ACB} = 180^0\)
Xét tam giác A'B'C' có:
\( \widehat {B'A'C'} + \widehat {C'B'A'} + \widehat {A'C'B'} = 180^0\)
\(\Rightarrow \widehat {BAC} + \widehat {CBA} + \widehat {ACB} = \widehat {B'A'C'} + \widehat {C'B'A'} + \widehat {A'C'B'}\)
\(\Rightarrow \widehat {BAC} = \widehat {B'A'C'}\)
b) A'B' là đường trung bình của tam giác ABM nên
\(A'B' = \frac {1}{2} AB \Rightarrow \frac {A'B'}{AB} = \frac {1}{2}\)
A'B' là đường trung bình của tam giác ABM nên
\(A'C' = \frac {1}{2} AC \Rightarrow \frac {A'C'}{AC} = \frac {1}{2}\)
Ta có: \( \frac{B'C'}{BC} = \frac{MB' +MC'}{2MB' + 2MC'} = \frac{MB' +MC'}{2(MB' + MC')} = \frac{1}{2}\)
\( \Rightarrow \frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{C'A'}{CA} \)
a)
i) Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).
Xét tam giác \(OA'B'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)
Do đó, \(A'B'//AB\) (định lí Thales đảo)
ii) Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).
b)
i)
- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).
Xét tam giác \(OA'B'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)
Do đó, \(A'B'//AB\) (định lí Thales đảo)
Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).
- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).
Xét tam giác \(OA'C'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)
Do đó, \(A'C'//AC\) (định lí Thales đảo)
Vì \(A'C'//AC \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{{AC}}{{A'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'C'}}{{AC}} = \frac{3}{1} = 3\).
- Vì \(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).
Xét tam giác \(OB'C'\) có:
\(\frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)
Do đó, \(B'C'//BC\) (định lí Thales đảo)
Vì \(B'C'//BC \Rightarrow \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{BC}}{{B'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{B'C'}}{{BC}} = \frac{3}{1} = 3\).
Do đó, \(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\)
ii) Xét tam giác \(A'B'C'\) và tam giác \(ABC\) ta có:
\(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\) (chứng minh trên)
Do đó, tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\).
a) Xét tam giác ABC vuông tại A ta có:
\(A{B^2} + A{C^2} = B{C^2}\) (Định lý Pytago)
\(\begin{array}{l} \Rightarrow {3^2} + C{A^2} = {5^2}\\ \Leftrightarrow C{A^2} = {5^2} - {3^2}\\ \Leftrightarrow C{A^2} = 16\\ \Leftrightarrow CA = 4\end{array}\)
Xét tam giác A’B’C’ vuông tại A’ ta có:
\(A'B{'^2} + A'C{'^2} = B'C{'^2}\) (Định lý Pytago)
\(\begin{array}{l} \Rightarrow {6^2} + A'C{'^2} = {10^2}\\ \Leftrightarrow A'C{'^2} = {10^2} - {6^2}\\ \Leftrightarrow A'C{'^2} = 64\\ \Leftrightarrow A'C' = 8\end{array}\)
b) Ta có:
\(\begin{array}{l}\frac{{A'B'}}{{AB}} = \frac{6}{3} = 2\\\frac{{B'C'}}{{BC}} = \frac{{10}}{5} = 2\\\frac{{C'A'}}{{CA}} = \frac{8}{4} = 2\end{array}\)
Ta thấy \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\).
c) Xét tam giác A’B’C’ và tam giác ABC có: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\)
\( \Rightarrow \Delta A'B'C' \backsim\Delta ABC\) (c-c-c)
\(\begin{array}{l}\frac{{A'B'}}{{AB}} = \frac{2}{4} = \frac{1}{2}\\\frac{{A'C'}}{{AC}} = \frac{3}{6} = \frac{1}{2}\\\frac{{B'C'}}{{BC}} = \frac{4}{8} = \frac{1}{2}\end{array}\)
Ta thấy \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\)