Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cơ năng trong quá trình dao động là:
W=\(\frac{1}{2}\)mω2A2=\(\frac{1}{2}\).0,2.202.52=1000(J)
b) Biểu thức thế năng là:
Wt=\(\frac{1}{2}\)mω2A2cos2(ωt+φ0)= \(\frac{1}{2}\).0,2.202.52cos2(20t)=1000cos2(20t)
Biểu thức động năng là:
Wd=\(\frac{1}{2}\)mω2A2sin2(ωt+φ0)= \(\frac{1}{2}\).0,2.202.52sin2(20t)=1000sin2(20t)
Vật chuyển động từ biên âm về vị trí cân bằng thì thế năng của vật giảm từ giá trí lớn nhất về 0 còn động năng thì tăng dần từ 0 đến giá trị lớn nhất và ngược lại.
Vật chuyển động từ vị trí cân bằng đến vị trí biên âm thì thế năng của vật tăng dần từ 0 đến giá trị lớn nhất còn động năng giảm dần từ giá trị lớn nhất về 0 và ngược lại.
Khi vật di chuyển từ biên âm đến vị trí cân bằng thì thế năng giảm động năng tăng và ngược lại.
Khi vật đi chuyển từ vị trí cân bằng đến biên dương thì thế năng tăng động năng giảm và ngược lại.
Vật đạt động năng cực đại khi ở vị trí cân bằng và cực tiểu khi ở vị trí biên còn thế năng thì ngược lại.
Phát biểu nào sau đây là sai khi nói về năng lượng của hệ dao động điều hoà:
A. Hệ có thế năng cực đại khi vật ở vị trí biên dương.
B. Vật có động năng cực đại khi ở vị trí cân bằng.
C. Hệ có cơ năng không đổi trong suốt quá trình dao động.
D. Hệ có thế năng bằng không khi vật ở vị trí biên âm
Hệ có động năng cực đại tại VTCB, thế năng cực đại tại vị trí hai biên (biên âm và dương) và ngược lại.
a) Từ 0 đến \(\frac{T}{4}\): Wđ tăng từ 0 đến giá trị lớn nhất tại \(\frac{T}{4}\), Wt giảm từ giá trị lớn nhất về 0 tại \(\frac{T}{4}\).
Từ \(\frac{T}{4}\)đến \(\frac{T}{2}\): Wđ giảm từ giá trị lớn nhất về 0 tại \(\frac{T}{2}\), Wt tăng từ 0 đến giá trị lớn nhất tại \(\frac{T}{2}\).
Từ \(\frac{T}{2}\)đến \(\frac{{3T}}{4}\): Wđ tăng từ 0 đạt giá trị lớn nhất tại \(\frac{{3T}}{4}\),Wt giảm từ giá trị lớn nhất về 0 tại \(\frac{{3T}}{4}\).
Từ \(\frac{{3T}}{4}\)đến T: Wđ giảm từ giá trị lớn nhất về 0 tại T, Wt tăng từ 0 đến giá trị lớn nhất tại T.
b) Tại thời điểm t = 0: Wđ = 0, Wt = W.
Tại thời điểm t = \(\frac{T}{8}\): Wđ = Wt = \(\frac{{\rm{W}}}{2}\).
Tại thời điểm t = \(\frac{T}{4}\): Wđ = W, Wt = 0.
Tại thời điểm t = \(\frac{{3T}}{8}\): Wđ = Wt = \(\frac{{\rm{W}}}{2}\).
→ ở mỗi thời điểm trên ta đều có: Wđ + Wt = W.
Tham khảo:
Trong quá trình vật dao động, khi động năng cực đại thì thế năng cực tiểu, khoảng thời gian ngắn nhất để chúng có cùng trạng thái là \(\Delta t=\dfrac{T}{4}\) nên độ lệch pha là\(\Delta\varphi=\dfrac{2\pi}{T}\cdot\dfrac{T}{4}=\dfrac{\pi}{2}\left(rad\right)\). Tức là động năng và thế năng vuông pha với nhau.
Phương trình dao động của vật là: \(x=Acos\left(\omega t-\dfrac{\pi}{2}\right)\)
Thế năng của dao động là: \(W_t=\dfrac{1}{2}m\omega^2A^2cos^2\left(\omega t-\dfrac{\pi}{2}\right)\)
Động năng của dao động là: \(W_d=\dfrac{1}{2}m\omega^2A^2sin^2\left(\omega t-\dfrac{\pi}{2}\right)\)
Đường màu xanh lá cây là thế năng, đường màu xanh nước biển là động năng
Trên đồ thị những thời điểm mà hai đồ thị cắt nhau thì động năng và thế năng có độ lớn bằng nhau
Khi thế năng của vật tăng thì động năng của vật giảm và cơ năng luôn bằng tổng giá trị của động năng và thế năng .