Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ thêm đường thẳng AN vuông góc với AM và cắt CD ở N. Chứng minh được: \(\Delta AND=\Delta AMB\left(c-g-c\right)\Rightarrow AM=AN\)(cạnh tương ứng)
Tiếp tục áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ANI .......... => ĐPCM
Bài 1:
trên Cd lấy E sao cho AE = AM
bạn sẽ dễ dàng chứng minh tam giác EAD và tam giác MAB bằng nhau theo trường hợp cạnh huyền cạnh góc vuông.
suy ra góc EAD = góc BAM. mà góc BAM + góc DAM = 90 độ => góc EAD + góc DAM = góc EAI = 90 độ suy ra tam giác EAI vuông tại A.
từ đó bạn sẽ dễ dàng chứng minh được 1/AE^2 + 1/ AI^2 = 1/AD^2 (theo hệ thức cạnh và đường cao trong tam giác vuông) => hay 1/AM^2 + 1/AI^2 = 1/a^2 (đpcm) :D
bài 2 :
câu a nè
A = (3x^2 - 8x + 6)/(x^2 -2x + 1)
hay Ax^2 - 2Ax + A = 3x^2 - 8x + 6.
=3x^2 - 8x + 6 - Ax^2 + 2Ax -A
= x^2(3 - A) + 2x(A-4) + 6 - A.
delta' = b'^2 - ac = (A-4)^2 - (3-A)(6-A)
= A^2 - 8A + 16 - 18 + 3A + 6A - A^2
= A -2.
để phương trình có nghiệm <=> delta' >= 0 <=> A-2 >= 0 <=> A >= 2.
vật giá trị nhỏ nhất của A = 2
thay A = 2 vào biểu thức A ta sẽ có 2 = (3x^2 - 8x + 6)/(x^2 - 2x +1) từ đó giải được x = ? để min A = 2 :D
b) bạn luôn có a^2 + b^2 >= 2ab
b^2 + c^2 >= 2bc
a^2 + c^2 >= 2ac
cộng 3 vế bđt bạn sẽ có 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac
hay a^2 + b^2 + c^2 >= ab + ac + bc (đpcm)
chúc bạn học tốt :D
=
Goi giao diem cua tia AE va DN la G
a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)
\(\widehat{G}+\widehat{ANG}=90^0\)
\(\widehat{AME}+\widehat{AEM}=90^0\)
\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)
Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)
Suy ra:\(AN=AE\)(2 canh tuong ung)
b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)
\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)
d, tam giác AND đồng dạng với tam giác MAB (gg)=>AM/MB=AN/AD
=>AM.AD=AN.MB => AM^2.AD^2=AN^2.MB^2
Cộng 2 vế với AN^2.AD^2 =>AM^2.AD^2 + AN^2.AD^2 = AN^2.MB^2 + AN^2.AD^2
=>AD^2.(AM^2+AN^2)=AN^2(MB^2+AB^2)
=>AD^2(AM^2+AN^2)=AN^2.AM^2 (vì MB^2+AB^2=AM^2 theo định lý pytago)
=>1/AD^2=(AN^2+AM^2)/AM^2.AN^2
=>1/AD^2=1/AM^2+1/AN^2
A B C D M I E
Từ A kẻ AE vuông góc với AI , cắt CD ở E.
Xét hai tam giác vuông : tam giác EAD và tam giác ABM có AD = AB = a
góc EAD = góc BAM vì cùng phụ với góc DAI
=> tam giác DAF = tam giác BAM (cgv.gnk) => AE = AM
áp dụng hệ thức về cạnh trong tam giác vuông AEI có đường cao AD ứng với cạnh huyền EI :
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AI^2}\) hay \(\frac{1}{AM^2}+\frac{1}{AI^2}=\frac{1}{a^2}\)
cám ơn bạn, mk cũng làm được rồi