Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cΔCDAαΔCBD⇒CDBC=ADBD=ACCD⇒ACBC=CD2BC2ΔCDAαΔCBD⇒CDBC=ADBD=ACCD⇒ACBC=CD2BC2
Theo hệ thức lượng trong tam giác vuông ta có: AHBH=HD2HB2AHBH=HD2HB2
Cần chứng minh: CD2BC2=HD2HB2⇔CDBC=HDHBCD2BC2=HD2HB2⇔CDBC=HDHB
Mà CDBC=ADBDCDBC=ADBD. Cần cm: ADBD=HDHBADBD=HDHB
Mà ΔADBαΔHDBΔADBαΔHDB(g.g) nên ta có đpcm
Qua điểm nằm ngoài đường tròn $(O)$, vẽ tiếp tuyến $CD$ với đường tròn $(O)$ ( $D$ là tiếp điểm). Đường thẳng $CO$ cắt đường tròn tại hai điểm $A&# - Hình học - Diễn đàn Toán học
a)
Tứ giác AEMC nội tiếp vì có 2 đối nhau góc ^EAC và ^EMC vuông.
Tứ giác BCMF nội tiếp vì có 2 đối nhau góc ^FBC và ^FMC vuông.
b)
^AMB=90º (góc nội tiếp (O) nhìn đường kính AB)
AEMC nội tiếp =>^MEC=^MAC.
BCMF nội tiếp =>^MFC=^MBC.
=>∆AMB~∆ECF (g.g) =>^ECF=^AMC =>ECF vuông tại C.
a: Xét tứ giác OBKC có \(\widehat{OBK}+\widehat{OCK}=90^0+90^0=180^0\)
nên OBKC là tứ giác nội tiếp
=>O,B,K,C cùng thuộc một đường tròn
b: Ta có: ΔOMN cân tại O
mà OA là đường cao
nên OA là phân giác của góc MON
Xét ΔMOA và ΔNOA có
OM=ON
\(\widehat{MOA}=\widehat{NOA}\)
OA chung
Do đó: ΔMOA=ΔNOA
=>\(\widehat{OMA}=\widehat{ONA}\)
=>\(\widehat{ONA}=90^0\)
=>AN là tiếp tuyến của (O)
c: Xét (O) có
KB,KC là tiếp tuyến
Do đó: KB=KC
=>K nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OK là đường trung trực của BC
=>OK\(\perp\)BC tại I và I là trung điểm của BC
Xét ΔOBK vuông tại B có BI là đường cao
nên \(OI\cdot OK=OB^2\)
=>\(OI\cdot OK=ON^2\left(3\right)\)
d: Xét ΔNOA vuông tại N có NH là đường cao
nên \(OH\cdot OA=ON^2\left(4\right)\)
Từ (3) và (4) suy ra \(OI\cdot OK=OH\cdot OA\)
=>\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)
Xét ΔOIA và ΔOHK có
\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)
\(\widehat{HOK}\) chung
Do đó: ΔOIA đồng dạng với ΔOHK
=>\(\widehat{OIA}=\widehat{OHK}\)
=>\(\widehat{OHK}=90^0\)
mà \(\widehat{OHM}=90^0\)
nên K,H,M thẳng hàng
mà M,H,N thẳng hàng
nên K,M,N thẳng hàng
A B O C D E H
a, Ap dung tinh chat 2 tiep tuyen cat nhau => \(CD=CE\Rightarrow\Delta CDE\) can
b, Co \(\widehat{CDO}=\widehat{CEO}=90^0\Rightarrow\)