K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2022

A B C F K O E

a/ Ta có B và C cùng nhìn AO dưới 1 góc vuông nên B và C cùng nằm trên đường tròn đường kính AO => ABOC là tứ giác nội tiếp

b/ 

Xét tg ABF và tg AKB có

\(\widehat{BAK}\) chung

\(sđ\widehat{ABF}=\dfrac{1}{2}sđ\) cung BF (góc giữa tiếp tuyến và dây cung)

\(sđ\widehat{AKB}=\dfrac{1}{2}sđ\) cung BF (góc nội tiếp)

\(\Rightarrow\widehat{ABF}=\widehat{AKB}\)

=> tg ABF đồng dạng với tg AKB (g.g.g)

\(\Rightarrow\dfrac{AB}{AK}=\dfrac{BF}{BK}\) (1)

Tương tự ta cũng c/m được tg ACF đồng dạng với tg AKC

\(\Rightarrow\dfrac{AC}{AK}=\dfrac{CF}{CK}\) (2)

Mà AB=AC (hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau) (3)

Từ (1) (2) (3) \(\Rightarrow\dfrac{BF}{BK}=\dfrac{CF}{CK}\Rightarrow BF.CK=CF.BK\) (đpcm)

c/

Xét tg FCE và tg BCE có

\(\widehat{BEC}\) chung

\(sđ\widehat{FCE}=\dfrac{1}{2}sđ\) cung CF (góc giữa tiếp tuyến và dây cung)

\(sđ\widehat{EBC}=\dfrac{1}{2}sđ\) cung CF (góc nội tiếp)

\(\Rightarrow\widehat{FCE}=\widehat{EBC}\)

=> tg FCE đồng dạng với tg BCE (g.g.g)

 

 

17 tháng 5 2021

bạn nào cập nhật bài này cần đáp án thì bấm vào câu hỏi thì giáo viên có ghi đáp án đấy

a: góc OBA+góc OCA=90+90=180 độ

=>OBAC nội tiếp

Xét ΔCME và ΔBMC có

góc M chung

góc CEM=góc BCM

=>ΔCME đồng dạng với ΔBMC

b: Xét ΔABE và ΔAKB có

góc ABE=góc AKB

góc BAE chung

=>ΔABE đồng dạng với ΔAKB

=>BF/BK=BA/AK=AE/AB

Xét ΔACE và ΔAKC có

góc ACE=góc AKC

góc CAE chung

=>ΔACE đồng dạng với ΔAKC

=>CE/CK=AE/AC

=>CE/CK=BF/BK

=>CE*BK=CF*BK

2 tháng 6 2018

O A B C H D I K E F

b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.

Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1) 

AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC

=> AO vuông góc BC (2)

Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.

Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB

=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB

Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800

=> Tứ giác AIKH nội tiếp đường tròn (đpcm).

b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD

\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC

Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC

=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)

Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)

Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600

<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.

Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)

=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.

Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK

=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).

20 tháng 4 2020

A B C M I O D

20 tháng 4 2020

a.Vì AB là tiếp tuyến của (O)

\(\Rightarrow MB\) là tiếp tuyến của (O)

\(\Rightarrow\widehat{MBI}=\widehat{BCM}\)

\(\Rightarrow\Delta MBI~\Delta MCB\left(g.g\right)\)

b ) Từ câu a ) \(\Rightarrow\frac{MB}{MC}=\frac{MI}{MB}\Rightarrow MB^2=MI.MC\)

Mà M là trung điểm AB \(\Rightarrow MA=MB\Rightarrow MA^2=MI.MC\)

\(\Rightarrow\frac{MA}{MI}=\frac{MC}{MA}\Rightarrow\Delta MAI~\Delta MCA\left(c.g.c\right)\)

c ) Từ câu a , b \(\Rightarrow\widehat{MBI}=\widehat{MCI},\widehat{MAI}=\widehat{ACI}\)

\(\Rightarrow\widehat{BCD}=\widehat{BID}=\widehat{IBA}+\widehat{IAB}=\widehat{ICB}+\widehat{ICA}=\widehat{BCA}=\widehat{BDC}\)

\(\Rightarrow\Delta BCD\) cân tại B

20 tháng 5 2016

a) có 2 góc vg cùng nhìn 1 cạnh

b)EAC=ACO

tam giác AOC cân tại O

=>.......................

c) theo câu a =>AFE=ADE

từ câu b =>CAB=CAE

CAB=BCD

=>...........................

d) đang suy nghĩ

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0