Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=5-3-\sqrt{5}\)
\(=2-\sqrt{5}\)
b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)
\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)
\(=2\sqrt{3}+\sqrt{6}\)
c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)
\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)
\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)
\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)
\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))
\(=\sqrt{3}+\frac{8}{3}\)
d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)
\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)
\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)
\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))
\(=6-3\sqrt{3}\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)
b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)
c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)
d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)
e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)
f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)
g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)
a) Ta có: \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)
\(=\sqrt{3}\left(2+\sqrt{16}-\sqrt{25}-\sqrt{81}\right)\)
\(=\sqrt{3}\left(2+4-5-9\right)\)
\(=-8\sqrt{3}\)
b) Ta có: \(\left(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}+\sqrt{5}}\)
\(=\left(\frac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)\)
\(=7-5=2\)
c) Ta có: \(\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)\cdot\left|\sqrt{3}-1\right|\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)(Vì \(\sqrt{3}>1\))
\(=3-1=2\)
d) Ta có: \(5\sqrt{2}+\sqrt{18}-\sqrt{98}-\sqrt{288}\)
\(=\sqrt{2}\cdot\left(5+\sqrt{9}-\sqrt{49}-\sqrt{144}\right)\)
\(=\sqrt{2}\cdot\left(5+3-7-12\right)\)
\(=-11\sqrt{2}\)
e) Ta có: \(\left(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{3}+\sqrt{5}}\)
\(=\left(\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)\)
\(=3-5=-2\)
g) Ta có: \(\left(\sqrt{3}-1\right)\cdot\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\)
\(=\left(\sqrt{3}-1\right)\cdot\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\cdot\left|\sqrt{3}+1\right|\)
\(=\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1>0\))
\(=3-1=2\)
\(Q=\left(\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{-\left(\sqrt{3}-1\right)}-\sqrt{5}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(5-2\right)=-3\)
\(S=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}-\sqrt{\frac{6+2\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}=\frac{\sqrt{10}-\sqrt{2}}{4}-\sqrt{\frac{\left(\sqrt{5}+1\right)^2}{4}}\)
\(=\frac{\sqrt{10}-\sqrt{2}}{4}-\frac{\sqrt{5}+1}{2}=\) bạn coi lại đề
\(T=\frac{4\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\frac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=\frac{4\left(1+\sqrt{3}\right)}{-2}-\sqrt{3}=-2-3\sqrt{3}\)
đúng là cậu S sai đề thật ;-;;
S = \(\frac{2}{\sqrt{5}+1}-\sqrt{\frac{2}{3-\sqrt{5}}}\)